
Neuron Topics using TCP

Performance Tuning and Enhancements in release 2.5.10

© 2011 Neudesic. All rights reserved.

Marty Wasznicky

March 2011

Version 1.0

Overview
The 2.5.10 release of Neuron ESB introduces significant changes in the behavior and performance

characteristics of Neuron services. Specifically affected are database related functions, Tcp Publishing

service (and its associated client Tcp Channel) and other internal Neuron services. These enhancements

were introduced to allow Neuron to achieve higher throughput, greater stability, increased concurrency

and improved overall performance.

To understand the scope of this paper, it’s important to note that Neuron ESB is entirely built on .NET

3.5 SP1 and uses the Windows Communication Foundation (WCF) for all internal and external

communication. Even though most communication details have been abstracted and simplified within

the Neuron ESB Explorer, there will be circumstances that require more advanced tuning and

configuration of Neuron than what was previously available in earlier releases. Although this paper has a

discernable focus Tcp Publishing service, it does describe the advanced tuning parameters now available

to Neuron administrators which affect other internal services as well. Various enhancements related to

performance and reliability included in this release are also addressed. Where possible, general

guidance is provided on when and how to use many of the new tuning parameters.

Using Tcp with Neuron Topics
The Tcp Publishing Service is used to configure a Topic’s Network Transport property. Neuron ESB is

unique in that it allows users to configure Topic based publish/subscribe to use either one of a number

of transports that best fit their quality of service (QoS) and delivery requirements. Out of the box,

Neuron ESB supports TCP, Peer, MSMQ and BizTalk as possible network transports. Each Topic can be

configured with a different network transport and can live side by side within the Neuron ESB runtime

environment.

When Tcp is selected for a Topic’s Network Transport property, a new instance of Neuron’s Tcp

Publishing Service is instantiated to service all requests for that Topic. Within the Neuron ESB

ecosystem, Neuron Parties (Subscribers or Publishers) are used to communicate with Topics and are

commonly associated with Service and Adapter Endpoints. However, Neuron Parties can also be hosted

in .NET applications residing on remote machines.

Neuron Parties (clients) that either publish or subscribe to information from a Tcp based Topic manage

their communication with the server internally using the Neuron ESB Tcp Channel. The ability to host

Neuron Parties in .Net applications on remote machines, coupled with the transitory (non-permanent)

nature of Tcp based subscriptions, introduces a unique set of management requirements. For instance,

when Tcp is used as the network transport for a Topic, Neuron must be aware of all publishers and

subscribers connected to the bus, so it knows when and who to route messages to. Tcp has no durability

facility so if a client is not connected, they would not be a potential subscriber for an inflight message.

NOTE: Tcp based Topics are the default in Neuron ESB. Tcp provides a low latency, low overhead

solution for customers who desire monitoring and control, but need neither the durability or

transaction support provided by MSMQ based Topics. Most customers use Tcp based Topics when

configuring request/response message patterns on the bus, or when deploying an MSMQ

infrastructure is too burdensome.

Internally, each Neuron Party that has a subscription to a Tcp based Topic will send a periodic “Ping” to

the Neuron ESB Tcp Publishing Service. If, after a specified period of time, a ping is not received, the

Neuron ESB Tcp Publishing Service will remove the Neuron Party from the list of potential subscribers.

This release offers a number of enhancements to the Tcp Publishing Service, its associated Tcp Channel

as well as to other internal Neuron ESB Services which a Neuron Party may be dependent on.

Collectively, this work greatly improves the performance and resource utilization of Tcp based Topics

(CPU, Memory and Threads) as well as the number of remote concurrent Neuron Parties that can

interact with a Topic. The areas covered in this paper are:

 Database Connection Configuration

 Ping Interval Communication

 Configuring Tcp Based Topics

 Configuring Neuron Services

 Connecting Neuron Parties

 WMI Client Configuration

 Start up and Shut down

 Performance Characteristics

 Tcp Optimization

What version is installed
Moving forward it’s very important to know what version/build of Neuron is being used. The 2.5.10

release is represented by the internal build number 2.5.555.0. Validating which build is currently

installed can be determined by opening the Neuron ESB Explorer and selecting “About Neuron” from the

“Help” menu. The following screen will be displayed:

Database Connection Configuration
Within the Neuron ESB Explorer, databases may be created, configured and assigned to different

deployment groups. Internally, Neuron ESB uses the database for Auditing (message tracking and failed

message support) and Activity Session tracking. Both these are optionally configured by the user.

However the database is required for client and endpoint tracking when two or more Neuron ESB

servers are configured to work as a server farm (where 2 or more servers share the same ESB

Configuration).

In previous releases, the Neuron ESB Explorer did not allow for direct modification of the database

connection string that the Neuron ESB runtime service uses. Normally, this would not be problematic.

However, under conditions of heavy load where there may be 100’s of connected clients, server farm

configuration and/or heavy auditing (1000’s of messages per second) or any combination thereof,

exceptions indicating timeouts associated with retrieving or creating a database connection for the

database connection pool could be generated. These exceptions may be found in the Windows

Application and Neuron ESB Event logs, as well as the Neuron ESB logs. These exceptions occur because

the default connection pool size is 100. Under these conditions it is possible for Neuron to exceed the

default connection pool size.

In regards to auditing, this type of exception would cause auditing to fail, both for tracking and failed

messages. However, this would normally not impact the ability for clients to publish or subscribe to a

message. However, in server farm scenarios the database is required as a component of the “Ping”

functionality. The “Ping” (similar to the mechanism used in the Tcp Publishing Service) allows each

server to know which clients are connected to one another. Hence, these database exceptions would

cause the “Ping” to fail, and the clients would be removed as eligible subscribers to the bus.

The 2.5.10 release corrects this by allowing users to modify the connection string directly through the

Neuron ESB Explorer, by selecting the “Edit Connection String” command button located in the Database

section of the Deployment menu as depicted below:

Selecting this command button will display a dialog box that permits overwriting the default connection

string. The suggested values for a connection string follows:

Data Source={server};Initial Catalog={database name};Integrated Security=True;Min Pool

Size=5;Max Pool Size=1000;Connect Timeout=15;Load Balance Timeout=30;Network

Library=dbmssocn

Due to the design of the Neuron database, it can comfortably handle 100s of active connections against

it at any time. To determine how many active connections exist against a database, performance

counters can be activated on the Neuron server (.Net has these performance counters disabled by

default) by adding the following to the Neuron ESB Service configuration file (C:\Program

Files\Neudesic\Neuron ESB\esbService.exe.config).

 <system.diagnostics>

 <switches>

 <add name="ConnectionPoolPerformanceCounterDetail"

 value="4"/>

 </switches>

 </system.diagnostics>

Alternatively, a simple SQL query can be performed within the SQL Server Management Studio:

NOTE: Enabling performance counters will always have a negative impact on performance. These

should not be enabled in production environments.

SELECT db_name(dbid) as DatabaseName, count(dbid) as NoOfConnections,

loginame as LoginName

FROM sys.sysprocesses

WHERE dbid > 0

GROUP BY dbid, loginame

Efficiently reusing and retrieving connections from the pool is directly impacted by the workload being

done on the Neuron server, as well as any constraints or work being performed on the Sql Server.

Lastly, some modifications were made internally to our database schema and stored procedures to

enhance the performance of the monitoring and reporting features that exist within Neuron. This will

require that a new Neuron database be created to be used with this release. The SQL Server data

import/export wizard can be used to transfer audit data from a previous version of the Neuron

database, to the new one created with this release.

Ping Interval Communication
As described earlier in this paper, the Ping functionality is specific to the Tcp Publishing Service and

Server Farm scenarios. It is used to accommodate the chance that a connected Neuron Party may fail to

cleanly disconnect from bus. In regards to the Tcp Publishing service, the default time for each

connected Neuron Party (whether remote, or associated with a service or adapter endpoint) to ping the

Tcp Publishing Service is every 5 seconds. This is called the Client Ping Interval. The Tcp Publishing

Service keeps track of every ping. If after 20 seconds, a ping reply is not received from a connected

Neuron Party, that Neuron Party is assumed disconnected and removed from the eligibility list of

recipients (those that can have messages routed to them). This 20 second timeout is called the Client

Expiration Interval.

Under normal conditions, this 5/20 interval is not an issue. However, if a server is running at near

maximum capacity, has many connected clients or, is experiencing high load conditions, these intervals

should be increased to decrease unnecessary “chatty” traffic. This will increase overall performance and

throughput.

In previous releases, we provided environmental variables which allowed users to override these values.

Specifically, the following environmental variables are defined as follows:

channel.tcp.client.expirationInterval

channel.tcp.client.pingInterval

The advantage of defining these within the Environmental Variables section of the Neuron ESB Explorer

are that different values could be assigned to different deployment groups as depicted below:

Unfortunately, a bug prevented the channel.tcp.client.pinginterval variable value from being used to

control the Neuron Party ping interval. This has been corrected in the 2.5.10 release. Under high load

conditions, it is recommended that these values be set to the following to decrease the chatter:

channel.tcp.client.expirationInterval = 120

channel.tcp.client.pingInterval = 30

An additional issue manifested itself under high load conditions. The issue would cause the individual

Neuron Party as well as the Neuron ESB Server to timeout when executing their respective pings. Under

these conditions, the ping did not actually timeout, it simply failed to fire. However, Neuron would

erroneously report the error as a timeout. If this occurred it would result in the client being removed

from the recipient list by the server, essentially treating it as if it were disconnected. The client would

then automatically go in an offline state, but then immediately try to reconnect. If these failures

continued to occur, it would result in a repeated, offline - reconnect scenario due to the resiliency built

into the Neuron ESB client stack.

We isolated the cause of the issue to a bug in the .Net Framework, specifically how it allocates and

manages IO threads. The 2.5.10 release addresses this issue by changing the mechanism for the Ping

functionality to ensure that they always fire when expected and any errors raised are accurately handled

and reported.

NOTE: Regardless of what values these are set to, it is best practice that they are set at a 1 to 3

ratio or greater.

Configuring Tcp Based Topics
The 2.5.10 release of Neuron introduces advanced enhancements of the Tcp Publishing service that

greatly extends its ability to scale to 100’s of connected clients as well as provide greater concurrency in

both datagram and request/response message patterns.

In previous releases customers would normally not notice aberrant behavior. However some could

experience unexpected memory and thread growth if running continuous medium to heavy load over a

protracted period of time. In time the memory growth could well exceed 2GIG and threads could climb

to 4,000, at which point the Neuron ESB server could become unresponsive. In time, the Neuron ESB

service would generate exceptions in the form of Socket Aborts and Timeouts.

This behavior was caused by a combination of default settings Neuron used internally (Max Concurrent

Calls was set to a default value of Int32.MaxValue), as well as the design of the resource manager that

previous releases of Neuron depended on to manage internal resource allocation and connections to

Neuron Parties.

To resolve the previous behavior, a new resource manager has been introduced with the 2.5.10 release.

Within the new resource manager, thread allocation and locking semantics have also been refined to

allow for greater concurrency. Additionally, we introduced a number of tuning parameters located on

the Networking tab of the Topic configuration section of the Neuron ESB Explorer as depicted below:

Many of the default values were raised (Listen Backlog from its previous default of 10), while others

were lowered (Max Concurrent Calls reduced to 1,000 from its previous default of Int32.MaxValue).

Almost all the new tuning parameters are specific to WCF and can be found here:

http://msdn.microsoft.com/en-us/library/ms731343.aspx

Neuron exposes the essential ones below. Although some of the parameters were previously available

to be adjusted, many are NEW. The new tuning parameters are highlighted in blue bold italic:

Name Default Value

Client Pool Size 100

Client Port Base 61007

Client Port Range 1000

Close Timeout 60

Large Message Optimization False

Listen Backlog 1000

Log No Recipients True

Max Buffer Pool Size 524288

Max Concurrent Calls 1000

Max Connections 1000

Max Received Message Size 2147483647

Open Timeout 60

Ordered False

Reliable False

Secure False

Send Timeout 60

Service Port 50010

Under normal circumstances, the only parameters which should be changed are Max Concurrent Calls

and Max Connections. These will have an immediate impact on the number of threads and memory

allocated to the ESB Service to support concurrency. In previous releases, the default value set for Max

Concurrent Calls was Int32.MaxValue. However, a high Max Concurrent Calls value can negatively

impact performance because of the extra work being done to allocate and manage more threads than

are needed. In fact, if set too high, overtime both private bytes and threads allocated to the Neuron ESB

service will grow to unstable levels. A comfortable default value to begin with is 16 * Processor Count.

Through testing, the correct value can be determined for the specific Neuron implementation. Since

many of our internal services are datagram calls, Max Concurrent Calls can be configured quite low and

yet still achieve a fairly high concurrency factor.

NOTE: The Neuron ESB Auditing service can now be configured to either function asynchronously

(default) or purely synchronously in the 2.5.10 release. With the latter, if an error occurs during

auditing, the message will not be submitted to the bus for processing.

http://msdn.microsoft.com/en-us/library/ms731343.aspx

Max Connections on the other hand controls the maximum number of connections to be pooled for

subsequent reuse on the client and the maximum number of connections allowed to be pending

dispatch on the server. Each of these properties uses a default value of 10, which was also the default in

previous releases of Neuron. In the 2.5.10 release of Neuron, the default value has been set to 1,000.

Modifying this upwards can improve performance when working with many hundreds of connected

Neuron Parties, or when using a Client Pool Size greater than 1. This will allow connections to remain

cached, rather than having to be created on demand. However, if working with only a small number of

Neuron Parties, lowering the default value may be appropriate. If this setting is too low, it can cause

Open Timeout and Abort errors to occur like those below:

The socket connection was aborted. This could be caused by an error processing your message or a receive

timeout being exceeded by the remote host, or an underlying network resource issue. Local socket timeout

was '00:01:00'.

Inner Exception: An existing connection was forcibly closed by the remote host

The open operation did not complete within the allotted timeout of 00:01:00. The time allotted to this

operation may have been a portion of a longer timeout.

The socket transfer timed out after 00:00:59.9989999. You have exceeded the timeout set on your binding.

The time allotted to this operation may have been a portion of a longer timeout.

Inner Exception: A connection attempt failed because the connected party did not properly respond after a

period of time, or established connection failed because connected host has failed to respond

The specific Neuron implementation should be tested to determine the right combination of parameter

values to use that provide the best balance between performance, concurrency and resource utilization.

Under conditions of high load and stress there are 4 parameters which will mostly like need to be

changed:

 Max Concurrent Calls

 Send Timeout

 Listen Backlog

 Max Connections

In the case of Max Concurrent Calls, the default value would mostly likely need to be reduced, perhaps

to a few hundred. In contrast, Max Connections and Listen Backlog may need to be increased to several

thousand. Send Timeout may need to be increased as internally, that value is also used to initialize the

Operation Timeout for the WCF Channel, which collectively is used for associated call backs. Lastly,

sometimes the Send Timeout may need to be increased due to lack of idle IO threads immediately

available to service the internal requests. Tuning IO threads to increase and optimize concurrency will be

addressed later in this paper.

As general guidance, if the following inner exception is written in either the control, management,

configuration, or auditing Neuron logs, it usually indicates that Neuron cannot create any new Tcp

Socket connections. This is very common in scenarios where there are more than 50 parties configured

or remotely attempting to connect. In this case, you should raise the Listen Backlog. Listen Backlog is a

socket-level property that describes the number of "pending accept" requests to be queued. If the listen

backlog queue fills up, new socket requests will be rejected. Neuron Services may handle a large number

of socket connections when working with 100’s of connected Neuron Parties. A larger backlog value will

prevent client connection requests from being dropped:

System.Net.Sockets.SocketException:

An existing connection was forcibly closed by the remote host

In contrast, if a Timeout exception similar to those below is found, it usually means that either the Send

Timeout or Max Concurrent Calls need to be changed. As a general rule, Send Timeout should never

exceed 5 minutes. However, if Max Concurrent Calls is configured too low or too high it may cause a

Timeout issue. Testing to find the right combination is essential.

System.TimeoutException: Sending to via net.tcp://localhost:50016/ESBTcpPubSub/ timed out

after 00:05:00. The time allotted to this operation may have been a portion of a longer timeout

Exception: The socket transfer timed out after 00:05:00. You have exceeded the timeout set on

your binding. The time allotted to this operation may have been a portion of a longer timeout.

There will be very few circumstances that will ever necessitate changing the value of the Open or Close

Timeout properties.

The Tcp Publishing service has many other tuning parameters exposed. One parameter that will need to

be changed as load and concurrent connections increase will be the Client Pool Size. The Client Pool

Size is a Neuron specific tuning parameter introduced as a way to optimize communication to Neuron

Parties when only a handful of them are actively configured. The Client Pool Size determines how many

WCF Connections will be made to a connected Neuron Party. When there are only a handful of Neuron

Parties, performance can be improved by up to 10% using the default value. However, as you configure

more Neuron Parties, performance degrades. As you increase the number of connections to a Neuron

Party concurrency is increasing, but so are resources to manage it. To support this concurrency, the Max

Concurrent Calls and Listen Backlog values will also need to be modified upwards. However, at a certain

point, the benefits of supporting multiple connections to a single Neuron Party becomes detrimental to

scale and performance. For example, if Pool Size is left at its default of 100, and you attempt to connect

100 Neuron Parties, Neuron could attempt to create up to 10,000 internal WCF connections. In fact,

under normal conditions, this may not be successful, however, if the Client Pool Size is set to 1 (this is

essentially identical to setting the Ordered property to True), several 100 (600 were tested) Neuron

Parties can be easily connected to publish and subscribe to messages with a fraction of the resources.

NOTE: After testing 600 connected Neuron Parties, 300 of which were publishing at a steady rate,

the other 300 subscribing to all messages, it was not necessary to increase either the Open or Close

Timeout of the Tcp Publishing service.

http://msdn.microsoft.com/en-us/library/system.servicemodel.channels.tcptransportbindingelement.listenbacklog.aspx

It is strongly recommended that the Client Pool Size value be changed to either 1 or 2 when actively

configuring more than a dozen Neuron Parties.

Request/Response Message Patterns
It is very important that the Max Concurrent Calls and Listen Backlog be tuned appropriately when

employing request/response message patterns over the Tcp Publishing service. Determining the best

setting will usually depend on 2 factors:

1. Number of concurrent calls your service receives.

2. Execution time for each call.

For example, if 10 request/response calls are received per second and the execution time for the service

method is 2 seconds. While the service is processing the first call we will receive 19 other calls.

The Max Concurrent Calls setting in this case would be 10 x 2 = 20. In a live scenario you might want to

add a 20% buffer to this and make it 24.

As in all cases, it’s extremely important to test the specific scenario to determine the best combination

of tuning parameters to adjust.

Increase the number of idle IO threads in the thread pool
If after the tuning parameters have been modified it’s found that the response times remain either

lower, or erratic (interspersed with long wait times), then the calls to the Tcp Publishing service may be

getting queued because there are not enough IO threads in the ThreadPool to handle the requests.

Generally, if the calls are not taking longer to process by the target service (i.e. Neuron Service

Connector) and very high CPU utilization is not seen then the increase in response time is likely the

result of the requests being queued while WCF waits for a new IO thread to be made available to handle

the request.

WCF uses managed IO threads from the CLR ThreadPool to handle requests and by default; the Thread-

Pool creates one IO thread for each CPU/Core. So on a single core machine that means you only have

ONE available IO thread to start with, and when more IO threads are needed they’re created by the

ThreadPool (an expensive operation) on demand, with a delay:

“The thread pool maintains a minimum number of idle threads. For worker threads, the default

value of this minimum is the number of processors. The GetMinThreads method obtains the

minimum numbers of idle worker and I/O completion threads.

When all thread pool threads have been assigned to tasks, the thread pool does not immedi-

ately begin creating new idle threads. To avoid unnecessarily allocating stack space for threads,

it creates new idle threads at intervals. The interval is currently half a second, although it could

change in future versions of the .NET Framework.

http://msdn.microsoft.com/en-us/library/system.threading.threadpool.getminthreads(v=VS.100).aspx

If an application is subject to bursts of activity in which large numbers of thread pool tasks are

queued, use the SetMinThreads method to increase the minimum number of idle threads. Oth-

erwise, the built-in delay in creating new idle threads could cause a bottleneck.”

The lack of adequate IO Threads on startup can also cause delays in connecting large number of Neuron

Parties (clients) concurrently connecting to the Neuron ESB service. It can also contribute to timeouts

related to the initial connection and publication of messages from a large number of concurrent clients.

However, raising the MinIOThreads setting in the ThreadPool doesn’t work as expected in .Net 3.5

because of a known issue with the ThreadPool. Microsoft has released a hotfix for this that you will need

to install:

http://support.microsoft.com/kb/976898

http://connect.microsoft.com/VisualStudio/Downloads/DownloadDetails.aspx?DownloadID=32699

Once the hotfix has been installed, the default ThreadPool settings can be easily overridden by selecting

the “Configure Server” toolbar button on the Neuron ESB Explorer to display the dialog box as depicted

below:

http://msdn.microsoft.com/en-us/library/system.threading.threadpool.setminthreads(v=VS.100).aspx
http://support.microsoft.com/kb/976898
http://connect.microsoft.com/VisualStudio/Downloads/DownloadDetails.aspx?DownloadID=32699

Configuring Neuron Services
The Neuron ESB runtime uses a number of internal services for everything from management, control,

configuration to auditing. Neuron Parties also access and connect to these services at runtime. For

example, when a Neuron Party calls Connect(), several things happen:

 The Neuron Configuration Service is called to retrieve the Party’s respective configuration

information. This information contains the details of what Topics to connect to, how to connect,

how each Topic is configured, retrieves the pipelines associated with the Party, etc.

 The Neuron Party then connects to each Topic using its respective Neuron Channel. Depending

on the Topic configuration and its transport, this may entail calling into one or more services.

For Tcp based Topics, this would mean calling into the Tcp Publishing Service instance associated

with the Topic.

 At intervals configured within the Neuron ESB Explorer, the Neuron Party will call the

Management Service to upload client Activity Session statistics.

 Additionally, at runtime, if either the Topic is configured for Auditing, or there is an Audit

pipeline step within a pipeline assigned to the Party, or a failure occurs, The Party will call the

Auditing Service

One of the benefits of an ESB is that internal services themselves are exposed as “Services”. Neuron is

fairly pure in that respect. However, in previous releases tuning parameters for these internal services,

all of which are all based on the WCF Net.Tcp transport, were not exposed

Under normal conditions, this was not an issue. However, under conditions of medium to heavy load,

failures could be experienced. These failures would present themselves in the form of timeouts or

socket exceptions. Other symptoms would be reduced capacity and scale, coupled with erratic CPU

utilization and, over time, increasing memory usage as well as extremely high thread counts. If left un-

monitored, the ESB Service could become unresponsive.

In the 2.5.10 release, we introduced a number of tuning parameters located on the Server tab of the

Zone configuration section of the Neuron ESB Explorer as depicted below. These are NEW settings which

were not previously exposed:

Many of the default values were raised (Listen Backlog from its previous default of 10), while others

were lowered (Max Concurrent Calls reduced to 1,000 from its previous default of Int32.MaxValue). The

new tuning parameters are all specific to WCF and can be found here:

http://msdn.microsoft.com/en-us/library/ms731343.aspx

Neuron exposes the essential ones below:

Name Default Value

Close Timeout 60

Listen Backlog 1000

Max Concurrent Calls 1000

Max Connections 1000

Open Timeout 60

Send Timeout 60

The information within the “ “ section of this paper regarding conditions Configuring Tcp Based Topics

and effects surrounding the modification of some of the parameters listed above such as Max

Concurrent Calls, Max Connections, Listen Backlog and Timeouts are applicable to the optimization of

Neuron’s internal services.

http://msdn.microsoft.com/en-us/library/ms731343.aspx

Connecting Neuron Parties
Timeouts can happen due to insufficient values configured for either the Topic’s network setting (such

as when using Tcp based topics i.e. Open/Close/Send Timeouts) or those settings located on the Server

tab of the Zone configuration. However, a timeout can also occur when the client is initially attempting

to connect to retrieve its configuration from the Neuron server. This happens before the client attempts

to connect to any other service within Neuron, including the auditing, management or Topic related

publishing service. The default timeout for obtaining configuration from the Neuron server is 60

seconds. In scenarios where there are 100’s of competing clients trying to connect to Neuron at the

same time, timeouts to the Neuron Configuration Service may occur. The value for these timeouts can

be increased by setting the following properties before the Connect() method is executed on the

Neuron Party:

Neuron.Esb.EsbService.ESBServiceFactory.BindingSettings = new Neuron.Esb.EsbService.BindingSettings();
Neuron.Esb.EsbService.ESBServiceFactory.BindingSettings.OpenTimeout = number of seconds;
Neuron.Esb.EsbService.ESBServiceFactory.BindingSettings.SendTimeout = number of seconds;

The OpenTimeout and SendTimeout property should not be set higher than 120 seconds. If Timeout

errors are still occurring, attempt to increase the Max Concurrent Calls in the Server tab of the Zone

Configuration within the Neuron ESB Explorer.

WMI Client Configuration
Internally, Neuron ESB exposes WMI performance counters (using a dynamic WMI provider) for every

connected Neuron Party. However, when attempting to connect 100’s of Neuron Parties, the memory

limitations of WMI are encountered and will result in the following exception being recorded in the

Application event log (provided client logging is enabled):

Log Name: Application

Source: Neuron ESB Client Context

Date: 3/20/2011 11:33:09 PM

Event ID: 5000

Task Category: None

Level: Warning

Keywords: Classic

User: N/A

Computer:

Description:

Event Info: Failed to initialize performance counters. Custom counters file view is out of

memory.

This can have a negative impact on overall performance of the system when working with hundreds of

configured Neuron Parties. When this error is encountered, the memory limit may be increased by

following the guidance in the section entitled, “Increasing Memory Size for Performance Counters” in the

following article.

http://msdn.microsoft.com/en-us/library/ms735098.aspx

Alternatively, in release 2.5.10, WMI performance counters for Neuron Parties can be disabled on the

General tab of the Zone Configuration section of the Neuron ESB Explorer. If working with hundreds of

Neuron Parties, it is recommended that this is disabled. Statistics for any individual connected Neuron

Party can be viewed within the Active Sessions display located in the Activity section of the Neuron ESB

Explorer.

Start up and Shut down
In previous releases of Neuron users would sometime experience the following when working with

many configured Neuron Parties and or when experiencing load conditions. The term “configured” in

this context refers to Neuron Parties either remotely connecting to the Neuron ESB Service or

configured in either service or adapter endpoints:

 Unusually long start up times of the Neuron ESB Service

 Unusually long shut down times for the Neuron ESB Service

 Neuron ESB Service appears to hang when shutting down

 Tcp Topic appears to hang when be set to Stop or Restart in Endpoint Health monitor

Several issues with the resource manager that previous versions of Neuron depending on was a

contributing factors causing these conditions to occur. The core of these issues involved the individual

startup times (instantiate a Neuron Party and call Connect()) of Tcp based Topics and the Parties that

subscribed to them.

These issues are fixed in the 2.5.10 release with the introduction of the new resource manager.

Below is a chart of startup times measured on a laptop running Windows 7 64 bit, 8 GIG RAM/dual

CPU/Quad Core. The Neuron Party tested had one Topic as the subscription and no pipelines attached.

The Horizontal scale is the time in hours, minutes and seconds, while the vertical scale represents the

number of Neuron Parties that were instantiated and connected to the Neuron ESB server.

NOTE: Startup times will be affected by other factors as well, including:

 How many Topics the Party is associated with

 If pipelines are associated with the Party, and how many

.

http://msdn.microsoft.com/en-us/library/ms735098.aspx

Performance Characteristics
A number of preliminary tests were performed to determine the characteristics and tuning parameter

values for two scenarios. The first involved supporting up to 600 connected Neuron Parties. 300 of

which would be publishing messages at a sustained rate, while the other 300 subscribed to ALL

messages published to Neuron. The other involved simple request/response service calls routed through

Neuron ESB and its relative performance when compared to calling the service directly.

All testing was performed on one Windows 7, 64 bit Laptop, 8 GIG RAM/dual CPU/Quad Core. The

machine also ran SQL Server 2008, MSMQ as well as a host of other desktop programs and browsers. All

agents as well as simulators used for load testing were hosted on this machine. No remote machines

were used.

Concurrent Neuron Parties
Many of the enhancements introduced with the 2.5.10 released were designed to not only increase

performance and decrease resource utilization, but also increase our ability to support an increasing

number of remotely connected Neuron Parties. In this test, a simulator was used to launch 600 Neuron

Parties, each on their own thread. Each Neuron Party would be instantiated, Connect to the bus and

then either wait to receive messages (OnReceive event) or continuously publish to the bus at a

sustained rate of 12 messages/sec.

The Active Sessions report within the Neuron ESB Explorer (depicted below) was used to monitor when

all Neuron Parties were connected to the bus (total number displayed on lower right corner). The

Activity Sessions report displays the time the connection was made, last update; messages sent and

received rates and other relevant statistics.

The Endpoint Health Monitor within the Neuron ESB Explorer was used to monitor the gradual increase

in throughput as well as to detect exceptions if they occurred.

Neuron Configuration

For testing concurrent Neuron Parties, the Neuron Topic was configured as follows:

Additionally, the minimum IO threads were overridden with the following values using the Configure

Server feature of the Neuron ESB Explorer. Neuron Tracing was set to Errors and Warnings only:

Observations

After all 600 connected clients ran continuously for 8 hours, 300 of which were publishing at a steady

rate while each of the other 300 were subscribing to an aggregate of all published messages, CPU

remained steady between 25-35%. Private Bytes for the ESB Service would move between 400-800MB

and threads never went above 275.

No errors were experienced.

Request/Response
Neuron ESB provides both service routing and service mediation capabilities. As such, Neuron can host

its own service endpoints (represented in the Neuron ESB Explorer as Client Connectors) for customer

applications to submit their requests to. These requests are then intelligently routed to the appropriate

existing back end service, represented in the Neuron ESB Explorer as a Service Connector. If a response is

returned by that service, Neuron forwards it back to the Client Connector and the calling customer

application.

By default, Neuron uses its Topic based Publish/Subscribe engine as the abstraction layer between the

incoming requests received by the Client Connector and later routed to the Service Connector, as well as

the returned response from the Service Connector, ultimately routed back to the Client Connector. The

advantage of this is that incoming requests can be easily re-routed to other services or different

subscribers, transparent to the customer application. Protocol and message mediation is managed by

the Neuron service and additional processing logic can be inserted at any point without the need to

modify existing customer applications or services.

Expectedly, there will always be some overhead when inserting an abstraction layer between two or

more service endpoints. This overhead usually can increase relative to concurrency and throughput.

NOTE: For increased performance Direct Routing can be used to circumvent the abstraction layer

of the Topic based Pub/Sub engine. This is done by adding the following in a Code Step within the

pipeline associated with the Client Connector:

context.Data.SetProperty("DirectConnect", "To", <Name of Service Connector>);

However, the overhead incurred is usually compensated by the additional services offered by the bus

such as:

 Accelerated development and deployment of services

 Configuration of new services

 Routing and intermediary services

 Mediation and protocol translation

 Process development and design

 Integration platform

 Event and service management

To better understand the performance characteristics testing was performed to compare the following:

 Calling a service directly

 Calling a service through Neuron ESB’s Client Connector (Neuron Topic Routing)

 Calling a service through Neuron ESB’s Client Connector (Direct Routing)

Sustainable Throughput

The key to performance testing is determining the correct balance between throughput and

concurrency for a given set of hardware and resources. The goal of course is to determine the maximum

sustainable throughput that a system employing Neuron ESB can sustain indefinitely, without seeing

performance degradation over time. Consider that conducting a 60 second or 5 minute test is typically

far less meaningful then conducting the same test that extends to 1 hour, 8 hours or 1 day. Tests that

appear to exceed thresholds within 1 to 5 minutes can steadily degrade if allowed to run longer due to

the back pressure created by machine resources or other services/processes that may be involved in the

service call.

Many other, sometimes external factors can affect the sustainable maximum throughput of a system

such as:

 Available server resources

 Auditing

 Encryption

 Compression

 Size of message

 Number of subscribers

 Business processing (pipelines) requirements

 External service performance

 Error conditions

The mediation of each of these factors can vary since each carries its own performance profile when

subjected to duress. For instance, if Auditing is employed, I/O optimization (among other things) may be

required on the SQL Server.

A critical step in determining the maximum sustainable throughput of the Neuron ESB System is to first

understand the performance thresholds the system needs to support. These should not be arbitrary

numbers since they directly impact the scale out/up strategy. The performance thresholds are defined

by the load characteristics expected to be placed on the system. These are usually defined in terms of:

 Average Response Time (RT) expected

 Peak RT acceptable

 Median RT

 Maximum concurrent users

 Average concurrent users

 Median concurrent users

 Average Transactions (request/response calls)/per second (TPS)/per concurrent user

 Peak TPS expected

For simplification purposes, if we knew that the Peak RT requirement was .5 seconds, with an peak TPS

of 100/per second per concurrent user, testing could be performed to determine exactly how many

concurrent users could be supported given a specific machine/set of resources, while maintaining an

Peak RT under .5 seconds and a peak TPS at 100+/per second. This information would be used as an

input to determine the appropriate scaling strategy for Neuron to meet greater concurrency, if required.

Scaling Strategies

Scaling up or out to achieve specific performance thresholds will vary depending configuration, resource

utilization of the machine, as well as the bottlenecks observed during testing. Things that may be

considered and when are:

Tuning Parameters

Depending on the transport (i.e. Tcp) and routing option used (Neuron Topic Routing vs. Direct Routing),

the tuning parameters in either the binding or in the property grid of the Networking tab for the Topic

can be modified and tested to increase overall performance.

Adding additional CPUs

If during testing, the CPU is observed peaking at 75-80% adding additional CPUs should be considered.

Adding additional Client Connectors and Service Connectors

Client and Service Connectors may become an observable bottleneck. Client Connectors and Service

connectors are independently hosted by Neuron, each with a limited set of resource and concurrency

constraints. Adding additional ones may resolve the issue.

Changing default bindings

Neuron ships with many WCF bindings used for Client Connectors and Service Connectors. However,

almost all the bindings use the WCF defaults for threshold and binding property settings. These may

cause unnecessary constraints and actually, over time have a deleterious effect on performance. The

best way to overcome this it to create custom bindings within the Neuron ESB Explorer that override

these defaults and use those custom bindings in the Client Connectors and Service Connectors.

Adding additional Topics

Generally speaking each Neuron Topic is represented internally by a hosted runtime service called a

Publishing Service. The exceptions to this are if Peer or BizTalk are used to configure the Network

property of a Topic. However, if Tcp or Msmq are used to configure the Network property of the Topic,

the Topic itself may become the bottleneck. In this case, adding another Topic can increase throughput

on the system, as long as the existing server resources are not already constrained.

Direct Routing

Neuron ESB supports a variety of routing options using the pipeline processing designer. One option is

called Direct Routing. Direct Routing uses a configured pipeline that directly routes the incoming

message to the specific Service Connector, bypassing Neuron’s pub/sub engine entirely. Overall

performance gains of up to 50% can be obtained using this method of routing.

Adding additional Neuron Servers

If the maximum sustainable throughout is reached on an existing Neuron server, then one or more other

Neuron Servers can be added to the existing Neuron configuration. A load balancer (hardware or

software based) can be used to evenly distribute service request loads between the Neuron servers.

Neuron Configuration

For testing request/response services, the Neuron Topic was configured ALMOST identically to the

configuration used for the Concurrent Neuron Parties testing, with the exception of the Max Concurrent

Calls setting. This was set to 25.

Additionally, the Max Concurrent Calls setting on the Client Connector was also set to 25.

Test Description

The following tests were performed using SOAP UI to simulate load testing.

 Calling a service directly

 Calling a service through Neuron ESB’s Client Connector (Neuron Topic Routing)

 Calling a service through Neuron ESB’s Client Connector (Direct Routing)

The service endpoint tested was a simple WCF service, hosted by a console application and configured

to use the basicHttp binding. It accepts a message and returns that same message as the response.

Directly against service

All tests were conducted against the actual service endpoint hosted in a console application with the

following URL: http://localhost:8731/Design_Time_Addresses/ServiceTwo/Service1/.

Neuron Topic Routing

All tests were conducted against the service endpoint hosted by Neuron’s Client Connector, represented

by the following URL: http://localhost:9001/myService, hosted by the Neuron ESB runtime. When the

service request is made, it is routed across the Tcp based Topic to the Service Connector which

configured with the actual service endpoint address

http://localhost:8731/Design_Time_Addresses/ServiceTwo/Service1/
http://localhost:9001/myService

(http://localhost:8731/Design_Time_Addresses/ServiceTwo/Service1/). The response is routed back to

the load testing agent through the bus.

Neuron Direct Routing

Identical to the Neuron Topic Routing except that routing to the Service Connector over the Tcp based

Topic was circumvented. Instead the call to the Service Connector was made within the pipeline

associated with the Client Connector using Named Pipes.

Test Results

Test – 1 Hour – 25 agents – 30 millisecond delay

Each test lasted 1 hour and included 25 agents, simulating 25 concurrent users. The agents were

gradually ramped up, 1 agent per second, until 25 agents were consecutively submitting requests. The

interval between service request invocations for each agent was configured at 30 milliseconds. As a

frame of reference, this would be consistent with 25 users concurrently submitting approximately 33

service requests/second.

Test goal: Determine sustainable throughput that achieved 25 concurrent users, while maintaining an

Average RT of less than 5 milliseconds.

Directly against service

 Average TPS = 799

 Average RT = 1.09 milliseconds

http://localhost:8731/Design_Time_Addresses/ServiceTwo/Service1/

Neuron Topic Routing

 Average TPS = 711

 Average RT = 4.88 milliseconds

Neuron Direct Routing

 Average TPS = 738

 Average RT = 3.6 milliseconds

Observations

Every test reached the goal of 25 concurrent users while maintaining an average RT of 5 milliseconds or

less. Additionally all TPS numbers were within the same 700 range. With every test, the goal was to also

reach a point of straight horizontal recordings for all graphs, indicating sustainable throughput.

No errors occurred during the testing. In this test, the TPS for Neuron Direct Routing was approximately

3% greater than that of Neuron Topic routing. The average RT for Neuron Direct Routing was about 26%

less than that of Neuron Topic Routing.

When comparing Neuron Direct Routing to calling the service directly (Neuron not used), TPS is

approximately 8% greater with the latter. The average RT for calling the service directly was about 70%

less than that of Neuron Direct Routing.

Processing utilization

As can be seen from the Task Manager images below, the average CPU% utilization was only about 28%

when Neuron Topic Routing was used. Whereas, CPU% utilization was approximately half that when

Neuron Direct Routing was employed.

Neuron Topic Routing

Neuron Direct Routing

Test – 1 Hour – 10 agents – 1 millisecond delay

Each test lasted 1 hour and included 10 agents, simulating 10 concurrent users. The agents were

gradually ramped up, 1 agent per second, until 10 agents were consecutively submitting requests. The

interval between service request invocations for each agent was configured at 1 millisecond. As a frame

of reference, this would be consistent with 10 users concurrently submitting approximately 1000 service

requests/second.

This is an unlikely load anyone would encounter. The underlying purpose of the test was to attempt to

increase the CPU utilization while maintaining a sustainable throughput.

Test goal: Determine sustainable throughput that achieved 10 concurrent users, while maintaining an

Average RT of less than 10 milliseconds.

Directly against service

 Average TPS = 4,128

 Average RT = 1.29 milliseconds

Neuron Topic Routing

 Average TPS = 1,042

 Average RT = 8.45 milliseconds

Neuron Direct Routing

 Average TPS = 1,633

 Average RT = 5 milliseconds

Observations

Every test reached the goal of 10 concurrent users while maintaining an average RT of 10 milliseconds or

less. However, TPS numbers varied widely. With every test, the goal was to also reach a point of straight

horizontal recordings for all graphs, indicating sustainable throughput.

No errors occurred during the testing. In this test, the TPS for Neuron Direct Routing was approximately

56% greater than that of Neuron Topic routing. The average RT for Neuron Direct Routing was about

41% less than that of Neuron Topic Routing.

When comparing Neuron Direct Routing to calling the service directly (Neuron not used), TPS is

approximately 152% greater with the latter. The average RT for calling the service directly was about

74% less than that of Neuron Direct Routing.

NOTE: Calling the service directly behaved differently than when either Neuron Topic or Direct

Routing was used. Specifically, within 10 minutes of starting each of the Neuron related tests, the

TPS and average RT stabilized and remained consistent throughout the remainder of the hour,

indicating that a sustainable throughput was reached. However, the test that involved calling the

service directly achieved a TPS of approximately 4,755 within the first 10 minutes, but from there

gradually declined during the remainder of the hour. Within 30 minutes this value decreased to

4,400. By the end of the test, the TPS value was still decreasing, terminating with a value of 4,100.

This suggests that a sustained throughput was not achieved, and if left to run longer, TPS may

decrease even more. An additional test was conducted in which calling the service directly was

allowed to run for 2 hours. After about 1.5 hours the numbers stabilized. The final TPS number

achieved was 3,548, approximately 117% greater than Neuron Direct Routing. The average RT was

1.6 milliseconds, or about 68% less than that of Neuron Direct Routing

In this test case, TPS was significantly less then when calling the service directly, yet average RT only

varied by less than 3 to 4 milliseconds. Considering the CPU utilization of the Neuron ESB host, either

tuning or adding an additional Topic and/or Service/Client Connector could be considered to increase

the TPS while maintaining a sub 10 millisecond average RT.

Processing utilization

The average CPU% utilization was about 50% when Neuron Topic Routing was used. Whereas, CPU%

utilization was approximately 35%-40% when Neuron Direct Routing was employed.

Tcp Optimization
Neuron ESB highly leverages Tcp for all internal services as well as Topics configured to use Tcp as the

network transport. To ensure optimal performance when running under high load conditions, the Tcp

stack should be tuned on all Neuron ESB servers as well as any machines remotely hosting a Neuron

Party. Much of the tuning can be configured directly in the registry, while other tuning may be more

specific to the machine and/or using NETSH commands. Below is a sample Registry file that can be

merged on Window 7, Windows 2008 and later operating systems. Some may also be used for Windows

XP, Vista and Windows 2003 (see Description section below to determine which ones to apply for the

various operating systems).

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa]

"DisableLoopbackCheck"=dword:00000001

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Network\Connections\StatMon]

"ShowLanErrors"=dword:00000001

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management]

"DisablePagingExecutive"=dword:00000001

"SystemPages"=dword:ffffffff

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters]

"DefaultTTL"=dword:00000040

"TcpTimedWaitDelay"=dword:0000001e

"EnableWsd"=dword:00000000

"EnableTCPA"=dword:00000001

"TCPMaxDataRetransmissions"=dword:00000007

"DisableTaskOffload"=dword:00000000

"EnableDca"=dword:00000001

"SynAttackProtect"=dword:00000000

"ReservedPorts"=hex(7):31,00,34,00,33,00,33,00,2d,00,31,00,34,00,33,00,34,00,\

 00,00,35,00,30,00,30,00,30,00,30,00,2d,00,35,00,30,00,30,00,30,00,38,00,00,\

 00,35,00,30,00,32,00,30,00,30,00,2d,00,35,00,30,00,32,00,30,00,30,00,00,00,\

 35,00,30,00,30,00,31,00,30,00,2d,00,35,00,30,00,31,00,30,00,30,00,00,00,00,\

 00

Description

EnableWsd

Setting EnableWsd = 0, essentially disables Tcp Heuristics. When no faulty networking devices are

involved, setting EnableWsd to 0 can enable more reliable high-throughput networking via Tcp receive

window autotuning. However, if it is believed that either the NIC does not support Tcp scaling or is

malfunctioning then set EnableWsd to 1 to enable heuristics. Windows then will automatically disable

TCP receive window autotuning when heuristics suspect a network switch component may not support

the required Tcp Receive Side Scaling. EnableWsd is used for Windows 2003 and Vista.

There is an associated NETSH command that can be used on Windows 7, Windows 2008 and later

operating systems to disable Tcp Heuristics immediately.

DefaultTTL

This should be changed from its default of 128 to 30. This should be changed on the Neuron sever. It

may also be changed on remote clients that run host the Neuron Party. However, testing should be

performed to ensure it does not adversely affect any other applications that may exist on the machine.

TcpTimedWaitDelay

Short lived (ephemeral) Tcp/IP ports above 1024 are allocated as needed by the OS. However, in some

instances under heavy load it may be necessary to lower the delay value to increase the availability of

user ports requested by an application.

If the default limits are exceeded under heavy loads, the following error may be observed: "address in

use: connect exception".

Neuron’s Tcp Publishing service is based on underlying socket connections/ports. This setting should be

changed from its default of 120 seconds to 30 seconds on the server and client machines to increase

availability of ports.

EnableTCPA

Setting EnableTCPA = 1 enables support for advanced direct memory access (NetDMA). In essence, it

provides the ability to more efficiently move network data by minimizing CPU usage. NetDMA frees the

CPU from handling memory data transfers between network card data buffers and application buffers

by using a DMA engine. EnableTCPA is used for Windows 2003 and Vista.

There is an associated NETSH command that can be used on Windows 7, Windows 2008 and later

operating systems to enable NetDMA immediately.

TCPMaxDataRetransmissions

This value controls the number of times that TCP retransmits an individual data segment (not

connection request segments) before aborting the connection. The retransmission time-out is doubled

with each successive retransmission on a connection and is reset when responses resume. Although the

documentation states the default value is 5, when not present in the registry, the default behavior is 255

retransmissions. This should be changed to 7.

DisableTaskOffload

Setting DisableTaskOffload = 0 allows for reducing CPU load by offloading some tasks required to

maintain the TCP/IP stack to the network card. Theoretically, Windows should automatically detect

capable network hardware.

The tasks offloaded are as follows:

 TCP/IP checksum calculation - each packet sent includes a verification checksum.

 TCP/IP segmentation - also known as "TCP Large Send" where Windows sends a large amount of

data to the network card, and the NIC is then responsible for dividing it according to the

network MTU. Experimental feature, not enabled by default.

 IPSec Encryption cyphers and message digests - provides encryption of packets at the hardware

level.

EnableDca

Setting EnableDca = 1 adds NETDMA 2.0 Direct cache access support. Direct Cache Access (DCA) allows a

capable I/O device, such as a network controller, to deliver data directly into a CPU cache. The objective

of DCA is to reduce memory latency and the memory bandwidth requirement in high bandwidth

(Gigabit) environments. DCA requires support from the I/O device, system chipset, and CPUs.

Windows 7, Windows 2008 and later operating systems support this. Vista and Windows 2003 do not.

There is an associated NETSH command that can be used on Windows 7, Windows 2008 and later

operating systems to enable DCA immediately.

SynAttackProtect

Should be disabled on the Neuron sever and remote clients that submit heavy volumes by setting

SynAttackProtect = 0. This is used for Windows XP, Vista and Windows 7. It is no longer used in

Windows 2008 and later operating systems. When enabled, the follow error may be observed: “An

existing connection was forcibly closed by the remote host”

DisableLoopbackCheck

Should be disabled on the Neuron Server

ReservedPorts

The next to the last entry, is the list of reserved Neuron ports to ensure that they do not interfere with

the Dynamic port range. This entry is only necessary on Vista, Windows 7 and Windows 2008 machines

as the dynamic port range has changed with those Operating Systems. On the Neuron server, this should

be set to the following:

NETSH Commands
In Windows 7, Windows 2008 and later operating systems the NETSH command can be used to modify

Tcp/IP settings for the machine. These modifications will take place immediately. To check the current

status of the Tcp/IP modifiable parameters, in elevated command prompt type the following command:

netsh int tcp show global

You will be presented with something like the following:

NOTE: On the machines where the Neuron Party is hosted (which would also be the Neuron Server)

the reserved port range that represents the client port range of the referenced Tcp based Topic

should also be added. By default the port range for one topic is 61007 – 62007. Port ranges will be

unique for each Topic.

The following NETSH commands may be executed on the machines to modify existing settings,

depending on the level of support that exists within the current routers and NICs:

netsh int tcp set global congestionprovider=ctcp

 NOTE: Should already be set to ctcp by default

netsh int tcp set heuristics disabled

 NOTE: This is automatically disabled if EnableWsd is set to 0 in the Registry

netsh int tcp set global autotuninglevel=normal

netsh int tcp set global netdma=enabled

NOTE: This is automatically enabled if EnableTCPA is set to 1 in the Registry

netsh int tcp set global dca=enabled

NOTE: Need to ensure NIC supports this. This is automatically enabled if EnableDca is set

to 1 in the Registry

netsh int tcp set global chimney= enabled

NOTE: Need to ensure NIC supports this. This is Tcp offloading (TOE). TCP Chimney

offload enables TCP/IP processing to be offloaded to network adapters that can handle

the TCP/IP processing in hardware.

netsh int tcp set global rss=enabled

NOTE: The Receive Side Scaling should be enabled for dual core CPU's for

parallel processing. This also requires support at the NIC level. This is enabled

out of the box for Windows Server 2008.

netsh int tcp set global ecncapability=enabled

NOTE: ECN is only effective in combination with AQM (Active Queue Management)

router policy.

Other NIC Settings
Enabling bi-directional flow-control and setting fixed speed and duplex is also strongly

recommended. Flow-control avoids TCP packet floods during periods of network

congestion/contention. Fixed speed and duplex ensures the NIC ports won’t go into auto-negotiate

mode (where the network “disappears” for a brief period then mysteriously returns).

Lastly, it is very important to maximize the ability of the on-board NIC hardware to process messages.

This requires increasing the driver buffering parameters to their maximum values. Buffering parameters

include, depending on the hardware and driver versions, Receive Buffers/Descriptors, Transmit

Buffers/Descriptors, and Coalesce Buffers/Descriptors. The defaults are set to sacrifice performance to

save memory (especially non-paged pool). With the amount of memory available on modern H/W and

especially on 64-bit architectures we always want to trade space for time.

Conclusion
The Neuron 2.5.10 release offers a number of advanced tuning parameters and enhancements that

allow it to outperform and scale to greater concurrency levels than what previous releases of Neuron

javascript://%20What%20is%20router%20?

supported. These enhancements allow administrators to configure Neuron to control resource

utilization and the associated behavior of Neuron Parties connecting to the bus. These new

enhancements also improve the overall performance of adapters and service endpoints hosted by

Neuron that use Tcp based Topics.

As in all cases, when tuning a Neuron implementation diligent testing should always be performed in a

controlled environment to determine the best balance between performance, concurrency, application

requirements, and resource utilization to determine the maximum sustainable throughput.

