
Implementing the Scatter Gather ESB

Pattern with Neuron Pipelines

© 2010, 2011 Neudesic. All rights reserved.

Marty Wasznicky

July 2011

Overview

This paper presents a simple and reliable design using the Neuron Pipeline Designer and Runtime to resolve

a common scatter-gather application integration problem described in the book Enterprise Integration

Patterns: Designing, Building, and Deploying Messaging Solutions.

The Scatter Gather pattern is manifested when a requester sends an asynchronous request to a number of

providers, which send their replies asynchronously to the requester. A common use for this pattern is when

a request for quote is received, and that request must be broadcast out to N number of providers for bid.

Each provider will (or may) reply to the request with their respective bid. From there the replies are

aggregated and the highest bidder may win.

Another scenario where this pattern is commonly employed is in the context of order processing. In those

cases, each order item that is not currently in stock could be supplied by one of multiple external suppliers.

However, the suppliers may or may not have the respective item in stock; they may charge a different price

and may be able to supply the part by a different date. To fill the order in the best way possible, quotes are

requested from all suppliers and then a decision is made as to which one provides the best term for the

requested item as show below in Figure 1.

In these scenarios it would not be uncommon if each service that the message was broadcast to required its
own unique translation/transformational or other preprocessing requirements before receiving the
message. Business rules may need to be injected and, perhaps even the services to broadcast to may need
to be dynamically resolved at runtime. In the figure above, each service may represent an individual
vendor.
An example of some business requirements addressed by this pattern’s implementation may be:

 Contact N airlines simultaneously for price quotes

 Buy ticket from either airline if price<=$$

 Buy the cheapest ticket if price >$$

 Buy the ticket from the first airline to respond

In summary, the Scatter Gather pattern’s goal is to send the same message to multiple recipients which will
(or may) reply to it. Wait for all (or some) of the replies and aggregate them into a single response
message. With this goal in mind, it can be observed that the Scatter Gather pattern includes the Aggregator

http://www.amazon.com/gp/product/0321200683/qid=1133923394/sr=2-1/ref=pd_bbs_b_2_1/104-9453188-0101526?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/0321200683/qid=1133923394/sr=2-1/ref=pd_bbs_b_2_1/104-9453188-0101526?s=books&v=glance&n=283155

(specifically Service Aggregation/Composition) pattern, but may also be composed of several other
patterns. For example, when broadcasting the message, a Splitter and Recipient List pattern may be
employed.

The Scatter Gather design relies on runtime services, message delivery, correlation, transaction
management and web service routing of Neuron ESB.

Note: Service composition, the act of building an application out of multiple services, is usually depicted

as a “has a” relationship and the whole is composed of the parts. In contrast, aggregation is a “uses a”

type of relationship. The differences are quite subtle but nevertheless important to grasp. In composition

relationships, the life cycles of parts are tied to the lifecycle of the whole and when the whole no longer

exists, the parts no longer exist either. In aggregation, the parts exist independent of the whole and can

go on living after the entity that uses them no longer exists.

This paper (and accompanying sample) establishes how a Neuron Pipeline can be used to broadcast a

message, asynchronously, to N number of services (recipients). Within the pipeline, the replies are then

aggregated and either published to the bus, or alternatively, they can be returned to the original calling

client. The pipeline goes further to illustrate how to dynamically resolve which services to execute at

runtime, mapping them to Topics, which are in turn mapped to Neuron Service Connectors. This provides a

loosely coupled solution as subscriptions are used to route to the services in the broadcast list. As part of

the solution, transformations (XSLT) may be associated with each service, and hence a way to dynamically

retrieve a transform from the Neuron ESB Configuration store at runtime and execute it is also

demonstrated.

Sample Manifest Description

The accompanying sample is composed of the following 4 components located under the default Neuron

installation directory in the following folder: \Samples\ServiceTutorials\Scatter Gather Pattern:

 Neuron ESB Configuration file named ScatterGatherPipelineSample.esb. This contains all the

Neuron specific artifacts used for this solution (i.e. Topics, Parties, Scatter Gather Pipeline, Client

and Service Connectors) pre-configured.

 Visual Studio 2008 solution named Scatter Gather Solution. This solution contains the three

following Visual Studio C# projects:

o ContosoClientRequest – A console application used to make the client side WCF service

request call into the Neuron ESB hosted service endpoint (Neuron Client Connector). The

code is displayed in Code Fragment 2 in the Designing the Pipeline section of this

document.

o NewMartQuoteService – A WCF service endpoint hosted within a console application. This

Web service endpoint represents a Quote Service hosted by a fictional vendor named New

Mart.

o OldMartQuoteService – A WCF service endpoint hosted within a console application. This

Web service endpoint represents a Quote Service hosted by a fictional vendor named Old

Mart.

At runtime, the sample provides a demonstration of the following scenario, which is dependent upon the

implementation of the Scatter Gather pattern described in this document.

Scenario Description

Step 1: Contoso Supply House is a fictional, modern, web based company that sells toys, appliances and

services to customers over the internet. Contoso hosts their own web site and exposes a public facing web

service so external distributors can automate the placement of orders.

Neuron Implementation: The public web service is hosted by Neuron ESB and is configured within the

Neuron Client Connector named, ContosoQuoteService, exposed on the url, http://localhost:9001.

Step 2: An external distributor submits a purchase request for red fire engine toy trucks to Contoso

through the public facing web service.

Neuron Implementation: The request is submitted by running the Visual Studio 2008 Console

Application named, ContosoClientRequest.exe.

Step 3: Contoso receives the distributor’s request. However, Contoso doesn’t keep any inventory in stock.

Instead they submit all orders to external vendors to get the best price for the items requested. The list of

vendors to query is selected based on the items ordered or by the distributor’s preference.

Neuron Implementation: The request is received by the Neuron Client Connector, ContosoQuoteService.

This Client Connector is configured to use the Neuron ESB Publisher named, ContosoQuoteServicePublisher,

which in turn uses the Scatter Gather pipeline described in the Designing the Pipeline section of this

document.

Step 4: Contoso has an automated process which determines the vendors to query for best price.

Neuron Implementation: The vendors to query are extracted from the custom SOAP header of the

original distributor’s purchase request from within the pipeline. NOTE: In most real world scenarios, the list

of vendors would probably be resolved from a database lookup (or some other means) within the pipeline.

Step 5: Each vendor hosts their own Quote Service, a web service that Contoso can submit their

distributor’s price queries against.

Neuron Implementation: Each vendor’s web service is represented by a Neuron Service Connector.

There are two vendors setup, Old Mart and New Mart.

The Old Mart web service endpoint is represented by the following:

 Neuron Service Connector named, “OldMartQuoteService”.

 OldMartQuoteService receives request messages from the bus through the Neuron ESB Subscriber

named, OldMartQuoteServiceSubscriber

 OldMartQuoteServiceSubscriber subscribes to the Finance.Vendors.OldMart.QuoteService Topic.

The New Mart web service endpoint is represented by the following:

http://localhost:9001/

 Service Connector named “NewMartQuoteService”.

 NewMartQuoteService receives messages from the bus through the Neuron ESB Subscriber named,

NewMartQuoteServiceSubscriber.

 NewMartQuoteServiceSubscriber subscribes to the Finance.Vendors.NewMart.QuoteService Topic.

Note: This describes the inherent mapping that exists between a Topic and Service Endpoint when using

Neuron ESB i.e. Topic -> Subscriber -> Service Connector -> web service endpoint.

Step 6: Contoso’s automated process submits a query to each vendor’s Quote Service, aggregating the

results and returning the options to the distributor.

Neuron Implementation: The original distributor’s purchase request is transformed according to each

vendor’s Quote Service requirements. Then the message is published to the bus, asynchronously, to the

Topic associated with each vendor’s Quote Service.

 For New Mart, the Topic is Finance.Vendors.NewMart.QuoteService

 For Old Mart the Topic is Finance.Vendors.OldMart.QuoteService

The Neuron Publishing Service forwards each request message to the respective web service endpoint of

the vendor, waits and then forwards the response from each back to the original instance of the Scatter

Gather Pipeline. The responses are combined, optionally transformed and returned to the distributor as a

SOAP response message.

Designing the Pipeline

The Scatter Gather pipeline depicted in Figure 2 is built using the following pipeline steps:

 Code, Split, Transform – Xslt, Publish, Decision, Cancel

The pipeline depicted begins with a Code pipeline step named “Get List of Services”.

Get List of Services

The “Get List of Services” responsibility is to determine the list of services to be called, as well as any

transformation requirements specific for those services. There are a number of common ways in which this

information could be resolved, depending if the information is sent along with the original request, or it is

retrieved at runtime. Resolution strategies can include and are not limited to the following:

 Service list information is sent at runtime by client via custom SOAP Headers

 Service list information is maintained in a static list within Neuron

 Service list information is obtained by querying a database at runtime

 Service list information is retrieved through the execution of business rules at runtime

Figure 1: An empty Split pipeline component as
displayed in the Neuron Pipeline designer.

Figure 2: The completed Scatter Gather pipeline as
displayed in the Neuron Pipeline designer.

Note: Several pipeline steps (specifically Code, Publish, Split and Decision) within the Neuron Pipeline

Designer support direct C# inline editing. In most cases, users simply right click the pipeline step and

select “Edit Code…” from the short cut menu to display the Code Editing Window (shown in Figure 3). The

Code Editing Window provides full access to .NET 3x Framework, supports intellisense, displays real time

compile errors and supports referencing external .NET assemblies. Compiling pipelines into .NET

assemblies is not necessary. All code is dynamically compiled either the first time the component is

executed within a pipeline, or after modification.

For example, a list of services to broadcast to, (later aggregate the responses of), could look very similar to

the xml fragment below. Each service node has 3 attributes, named topic, action and transform:

<NeuronServiceList xmlns=’urn:xmlns:neuronesb-com:soapheaders’>

<services>

<service topic='Finance.Vendors.OldMart.QuoteService'

action=’ http://schema.neuron.sample/oldmart/broadcast/IQuote/RequestQuote’

transform='QuoteRequest_To_OldMartQuote'>

</service>

<service topic='Finance.Vendors.NewMart.QuoteService'

 action=’http://schema.neuron.sample/newmart/broadcast/IBid/RequestBid’

transform='QuoteRequest_To_NewMartQuote'>

</service>

</services>

</NeuronServiceList>

Code Fragment 1: An example XML document representing a list of services to broadcast an incoming message to.

Each service is represented by a “service” node. The topic attribute determines where to route a message is inherently

mapped to a service endpoint, represented by a Neuron Service Connector. The action attribute is used to set the

Action Header field on the Neuron ESB Message. The transform attribute represents the name of an XSLT stored in the

Neuron ESB configuration store.

In Code Fragment 1, a “topic” rather than a “service name” attribute is used to represent the service

endpoint that should be called. Neuron ESB uses a Topic based Publish and Subscribe messaging layer to

control how messages are routed from service on ramps (Neuron Client Connectors using any WCF binding)

to service endpoints (Neuron Service Connectors represent any SOAP based or service URL). This provides a

level of abstraction and decoupling which facilitates the ability to easily and quickly change endpoints and

routing with minimal impact on clients. The topic attribute is therefore used to represent the actual service

endpoint that the client request will be routed to. Within Neuron there is always an underlying mapping

created between a service endpoint and Topic when a Subscriber Id (Neuron Party subscribing to one or

more Topics) is assigned to a Neuron Service Connector at design time.

The action attribute represents the Action (i.e. Operation/Method) on the service endpoint that needs to

be called.

The transform attribute will hold the name of the XSLT stored in the Neuron ESB configuration store. At

runtime, the actual XSLT content will be retrieved by using the transform attribute value as the lookup key,

passing that key to Neuron’s Transform – Xslt Pipeline Step.

Note: The XML format of the service list, property names and namespaces used in this example are

intended only for demonstration purposes. In lieu of a static list, a database lookup or LOB (Line of

Business) application query can be used. In fact the most common implementations usually employ some

of kind of database lookup or query to retrieve the necessary list of services to call.

For the sake of expediency, this example will use a static list of services defined within the first Code

Pipeline Step within the pipeline. WCF (Windows Communication Foundation) can be used to make the

initial SOAP request to a generic web service on ramp hosted by Neuron (through configuration of a Neuron

Client Connector) as shown in the Code Fragment 2:

using System;

using System.ServiceModel;

using System.ServiceModel.Channels;

using System.Xml;

namespace Neuron.Esb.Samples

{

 static class Utility

 {

 const string _msg = @"<PurchaseRequest>

 <Products>

<Product name='BigBox' quanity='10'

 location='Denver'></Product>

 </Products>

 </PurchaseRequest>";

 public static void PipelineByWebService()

 {

 XmlReader xmlReader = null;

 Message reqMsg = null;

 // Sending a request/response to a client connector

 using (var chan = new ChannelFactory<IRequestChannel>(new WSHttpBinding(),

 new EndpointAddress("http://localhost:9001")))

 {

 var proxy = chan.CreateChannel();

 using (xmlReader = XmlReader.Create(new System.IO.MemoryStream(

System.Text.Encoding.UTF8.GetBytes(_msg))))

 {

 using (reqMsg = Message.CreateMessage(

chan.Endpoint.Binding.MessageVersion, "", xmlReader))

 {

 Console.WriteLine(proxy.Request(reqMsg).ToString());

 reqMsg.Close();

 }

 xmlReader.Close();

 }

 proxy.Close();

 chan.Close();

 }

 }

 }

}

Code Fragment 2: Sample WCF C# code within Microsoft Visual Studio 2008. This represents code that a client can

execute to submit a message to Neuron hosted web service (Neuron Client Connector) listening on port 9001.

In Code Fragment 2, the original request is sent to the Neuron Client Connector’s endpoint address

(http://localhost:9001). Once the message is received by Neuron, a Code Pipeline Step is used to load the

static list of services depicted in Code Fragment 1 into an Xml Node List object, saving it as a Neuron

pipeline variable named, “ServiceConfiguration”. By right clicking the Code Pipeline Step named “Get List of

Services” within the Scatter Gather pipeline, the C# code fragment can be seen in Code Fragment 3:

http://localhost:9001/

// ***

// First retrieve the list of services to call. This could come in via soap headers,

// through an external database call, lookup, or from wherever is appropriate for

// the scenario.

// In Neuron, each service is represented by a topic, making this essentially a list of

// topics (or sub topics) to route to, which in turn results in a service call.

// In the last step, we add the list of services as a property to the existing pipeline

// context so that it can be retrieved in the next pipeline step

// ***

string nameSpace = "urn:xmlns:neuronesb-com:soapheaders";

string prefix = "n";

string serviceList =

 @"<NeuronServiceList xmlns='urn:xmlns:neuronesb-com:soapheaders'>

 <services>

 <service topic='Finance.Vendors.OldMart.QuoteService'

 action='http://schema.neuron.sample/oldmart/broadcast/IQuote/RequestQuote'

 transform='QuoteRequest_To_OldMartQuote'></service>

 <service topic='Finance.Vendors.NewMart.QuoteService'

action='http://schema.neuron.sample/newmart/broadcast/IBid/RequestBid'

transform='QuoteRequest_To_NewMartQuote'></service>

 </services>

 </NeuronServiceList>";

// Load the list of services into an XML Document, add the namespace and retrieve the

// service nodes,

// persisting the node list into the pipeline's context property

System.Xml.XmlDocument xmlDoc = new System.Xml.XmlDocument();

xmlDoc.LoadXml(serviceList);

System.Xml.XmlNamespaceManager nsMgr = new System.Xml.XmlNamespaceManager(xmlDoc.NameTable);

nsMgr.AddNamespace(prefix, nameSpace);

System.Xml.XmlNodeList nodeList = xmlDoc.SelectNodes("//n:service", nsMgr);

context.Properties.Add("ServiceConfigurations",nodeList);

Code Fragment 3: The Code Editing Window displays the C# code contents of the “Get List of Services” Code pipeline

step in the Scatter Gather pipeline example displayed in Figure 2. Code can be edited by right clicking on Code pipeline

step and selecting the “Edit Code…” short cut menu.

In the C# code fragment within the Code step editing window the Xml list of services is loaded into a

System.Xml.XmlDocument object that an XPATH statement is executed against to retrieve a list of

System.Xml.XmlNodes. The list of System.Xml.XmlNodes represents the list of services submitted by the

client. Following this, is the final line of code:

context.Properties.Add("ServiceConfigurations",nodeList);

Note: The “context” variable represents the Neuron.Pipelines.PipelineContext object passed to the Code

pipeline step by the Pipeline Runtime. This provides users access to the pipeline context, as well as to the

actual ESB Message object (accessed through the Data property).

This last line of code persists the list of services, (and System.Xml.XmlNodeList object), as a property of the

current pipeline instance (context) so that it may be retrieved later, within other steps in the pipeline.

Specifically, the list is saved as a property of the current pipeline context before runtime control is passed

to the Split pipeline step named “Broadcast and Aggregate”.

Broadcast and Aggregate

Code Split

The second pipeline step in the Scatter Gather pipeline is the Code Split portion of the “Broadcast and

Aggregate” Split pipeline step. In this pipeline step the message is cloned into a collection of identical

messages, with each message marked to be routed to a specific service contained in the list retrieved from

the custom SOAP header.

Here is where it’s necessary to understand some of the fundamentals of Neuron Pipelines and the Split

pipeline step. Generally, the Split pipeline step allows users to very easily de-batch an incoming message

(either by using a simple XPATH expression in a property grid, or by using the Code Editing Window) into

their individual parts, submitting these individual parts as a collection of messages to the next stage of the

Split pipeline step, called the Execution Block (labeled “Steps”). This Execution Block can contain N number

of other pipeline steps. An instance of the Execution Block will be executed for each message in the

collection of messages submitted to it. Additionally, the Execution Block can be set to run either

synchronously (process one message at a time) or asynchronously. In asynchronously mode, the .NET

thread pool is utilized to submit each message in the batch to its own Execution Block instance.

The Code Split portion of the Split pipeline step submits a List of Neuron.Pipelines.PipelineContext objects,

each one containing a message in the batch, to the Execution Block. Since the Split pipeline step “split

type” property is set to Code, (rather than XPATH), this collection must be created manually by using the

following C# code fragment in the Code Split portion of the Split pipeline step:

System.Collections.Generic.List<Neuron.Pipelines.PipelineContext<

Neuron.Esb.ESBMessage>> contexts;

contexts = new System.Collections.Generic.List<Neuron.Pipelines.PipelineContext<

Neuron.Esb.ESBMessage>>();

After the collection is created, the list of services previously persisted in the “Get List of Services” Code
pipeline step must be retrieved as follows:

System.Xml.XmlNodeList nodeList =

(System.Xml.XmlNodeList)context.Properties["ServiceConfigurations"];

Once the nodeList object is retrieved, loop through all the nodes performing the following steps:

1. Create a new Neuron ESB Message (Neuron.Esb.ESBMessage object), by cloning from the

original request message using “context.Data.Clone()”

2. Add a custom property to the new ESB Message that contains the Topic to publish to using

“SetProperty()”

3. Set the Action header of the Neuron ESB Message

4. If transform is required, set the Neuron Transform – Xslt Pipeline Step’s dynamic message

property using “SetProperty()”. This will enable the Transform – Xslt to dynamically look up

the Xslt at runtime from Neuron’s in memory Xslt configuration store.

5. Create a new Neuron.Pipelines.PipelineContext object and add the ESB Message to it

6. Add the new Neuron.Pipelines.PipelineContext + ESB Message to the List of

Neuron.Pipelines.PipelineContext objects

Note: The Neuron.Esb.Internal.PipelineRuntimeHelper.ClientContext.Configuration object provides full

access to all elements of the Neuron ESB configuration store. This store is loaded into memory by the

Neuron ESB Service at startup. This same store is edited by using the Neuron ESB Explorer user interface.

Lastly, the Neuron.Pipelines.PipelineContext list is passed to the Execution Block:

return contexts;

By right clicking the Code pipeline step named “Code Split” within the Split pipeline step, the C# code

fragment can be viewed as in Code Fragment 4:

//Create a list of pipeline contexts to be filled and returned to the aggregator

System.Collections.Generic.List<

Neuron.Pipelines.PipelineContext<Neuron.Esb.ESBMessage>> contexts;

contexts = new System.Collections.Generic.List<Neuron.Pipelines.PipelineContext<

Neuron.Esb.ESBMessage>>();

// Retrieve the list of services previously saved to the pipeline context property bag,

System.Xml.XmlNodeList nodeList =

(System.Xml.XmlNodeList)context.Properties["ServiceConfigurations"];

// Loop through the list of services, we'll create a new message from the original,

// adding the topic to the message's property bag so it can later be retrieved in

// the Steps block. Also add the transform if needed and set the action

foreach(System.Xml.XmlNode node in nodeList)

{

 Neuron.Esb.ESBMessage msg = context.Data.Clone(false);

 msg.SetProperty("neuron","PublishTopic",node.SelectSingleNode("@topic").InnerText);

 msg.SetProperty("neuron","xsltName",node.SelectSingleNode("@transform").InnerText);

 msg.Header.Action = node.SelectSingleNode("@action").InnerText;

 //create new context for the message

 PipelineContext<Neuron.Esb.ESBMessage> splitContext =

new PipelineContext<Neuron.Esb.ESBMessage> (

 context.Runtime, context.Pipeline, context.Instance, msg);

 splitContext.Properties.Add("__ClientContext",

 Neuron.Esb.Internal.PipelineRuntimeHelper.ClientContext);

 //add the context to the result

 contexts.Add(splitContext);

}

// Return the batch of messages to be processed by the STEP block

return contexts;

Code Fragment 4: The Code Editing Window displays the C# code contents of the “Code Split” Code pipeline step in the

Split pipeline step within the Scatter Gather pipeline example displayed in Figure 2. Code can be edited by right clicking

on Code pipeline step and selecting the “Edit Code…” short cut menu.

Note: SetProperty() and GetProperty() are methods of the Neuron.Esb.ESBMessage object. SetProperty()

can be used to add or modify existing Neuron specific message properties. It can also be used to add

custom or application specific properties (no schema required). A custom property can be added by

passing in a prefix, property name and value. GetProperty() can later be used to retrieve the value of the

property by passing in the prefix and property name.

Steps Execution Block

In the previous step, a new set of cloned messages was created from the original request message, some

custom properties were added, a new Neuron.Pipelines.PipelineContext was created for each one, and then

all were added to a list of Neuron.Pipelines.PipelineContext objects which were returned to the pipeline

runtime. Following this, the pipeline runtime will either do one of two things, depending on the value set

for the Synchronous property of the Split pipeline step:

1. If the Synchronous property is set to false, then the pipeline runtime will loop through the set of

new messages, executing all the pipeline steps within the Execution Block. Each message will be

processed, one at a time, completing all the steps in the Execution Block, before the next message

can be processed. The processing of all messages is handled on a single thread. For the

experienced developer, this is synonymous to a “Foreach” loop construct, whereas all the pipeline

steps within the Execution Block are essentially within a Foreach code block.

2. If the Synchronous property is set to true, then the pipeline runtime will use the .NET Thread Pool

to pass each message, on its own thread, to an instance of the Execution Block. This is essentially

synonymous to the parallel branch execution offered in most workflow designers.

Note: Even though the .NET thread pool is used when the Synchronous property of the Split pipeline step is

set to True, there is an internal max limit of 10 threads that will be used.

In the Scatter Gather pipeline, the Synchronous property for the Split pipeline step is set to true.

Once a message is delivered to the Execution Block (labeled “Steps”) several things happen, first and

foremost a check is made to determine if the original request message must be transformed to a format

required by the target service.

Requires Transform

The first pipeline step in the Execution Block is a Decision pipeline step, labeled “Requires Transform?”.

This has two branches labeled “Yes” and “No”. The “Yes” branch is configured to return either true or false

by evaluating for following inline C# code fragment:

return context.Data.GetProperty("neuron","xsltName","").Length > 1;

This code fragment retrieves the value of the Transform – Xslt Pipeline Step’s “xsltName” property (where

“neuron” is defined as the prefix) which was previously set on the ESB Message (represented by

context.Data) in the Code Split portion of the Split pipeline step. The Transform – Xslt Pipeline Step

optionally will use this property (if set) to dynamically load (by name) the Xslt stored in the Neuron

configuration store and execute it. If this line of code evaluates to “true”, then all the pipeline steps placed

under the “Yes” labeled branch are executed for the ESB Message. If the line of code evaluates to “false”,

then the “No” labeled branch will be executed. In the Scatter Gather pipeline, the “No” branch does not

contain any pipeline steps

Execute Transform

If a transformation is required, control is passed to the Transform – Xslt Pipeline Step labeled “Dynamic

Transform” located under the “Yes” branch which will translate the original incoming request message (an

ESB Message represented by the context.Data variable). In our example, XSLT is chosen to translate the

message, the name of which was previously retrieved in the Code Split portion of Split pipeline step.

Note: Although the method used in this example to translate the original client request message to the

message format required by the service endpoint is XSLT, any method including but not limited to custom

code, database query, and LOB query or business rules could be used.

Call Service

Once the transformation logic is completed, the Neuron ESB Message is passed to the Publish pipeline step,

labeled “Call Service”. The underlying purpose of this pipeline step is to call the service endpoint,

represented by a Neuron Service Connector. As was pointed out earlier in this document, our solution is

dependent on associating each service endpoint with (i.e. subscribing to) a specific Topic (or Sub Topic).

Therefore the Publish pipeline step publishes the Neuron ESB Message to the Topic by using the value of

the custom “PublishTopic” property (where “NEURON” is defined as the prefix) which was previously set

on the ESB Message (represented by context.Data) in the Code Split portion of the Split pipeline step. In the

Scatter Gather pipeline sample, the Publish pipeline step’s SelectorType property is configured to resolve

the Topic to publish to by using the Code editor as follows:

// Set the topic of the Publish step by retrieving it from custom message property

return message.GetProperty("neuron","PublishTopic","");

Since a response message is expected from the service subscribing to the Topic published on, the Publish

pipeline step’s Semantic property is set to Request. This will cause the pipeline execution to wait for either

the response message (forwarded from the Neuron Service Connector by the Neuron Publishing Service) or

a service timeout. Once the response message is received by the executing pipeline instance, the pipeline

runtime will use the contents of the response message to replace the body of the current ESB Message

being processed. This newly modified ESB Message will be used in all subsequent pipeline steps.

Behind the scenes, the Neuron Publishing Service accepts the published message, forwards it to the

expecting service endpoint, calls the endpoint, retrieves the response message and forwards that response

(through internal correlation) back to the original instance of the running pipeline. One of the many

benefits of having the Neuron Publishing Service (commonly referred to as the Neuron ESB Bus) sitting

between the pipeline and the service endpoint is that additional subscribers can be added at any time to

the Neuron configuration without affecting either existing clients or the service endpoints. Additionally, the

details of the service endpoint can be changed as well (i.e. WCF binding, URL, etc.) without impact on the

clients submitting messages to the system. If the Schema for the service endpoint changed, then only the

transform logic or XSLT would have to be updated, nothing would have to be recompiled or decomposed.

Join

Once ALL the messages are processed by their respective instance of the Execution Block and its associated

pipeline steps, control is passed to the Join portion of the “Broadcast and Aggregate” Split pipeline step.

Within the Join, the pipeline runtime can either reassemble all the individual Neuron ESB messages which

were processed by the Execution Block back into a list of Neuron.Pipelines.PipelineContext objects, or

discard them. How the Join functions is determined by the value of the “join type” property. In the Scatter

Gather pipeline, the join type is set to Wrapper, which allows configuration of the Join by setting two

properties in property grid, WrapperElementName and WrapperElementNamespace. In our example the

following property values were used:

WrapperElementName = QuoteCollection

WrapperElementNamespace = http://schema.neuron.sample/broadcast/result

This results in all the Neuron ESB Message bodies contained in the list of Neuron.Pipelines.PipelineContext

objects to be combined and encapsulated by an XML root node of “QuoteCollection” with the default

namespace of “http://schema.neuron.sample/broadcast/result”. An example of a result that the Join

would produce from the original message request follows:

<QuoteCollection xmlns=”http://schema.neuron.sample/broadcast/result”>

 <QuoteResult>Response received from service endpoint 1…</QuoteResult>

 <QuoteResult>Response received from service endpoint 2…</QuoteResult>

</QuoteCollection>

Code Fragment 5: An XML document representing the aggregated result message returned from the list of services

that were executed. Each service response is represented by a <QuoteResult> node. However, a service can return ANY

XML data. Whatever data is returned is inserted as a child node under the QuoteCollection wrapper root element.

In Code Fragment 5, each <QuoteResult> node represents the returned response message from a service

called through the “Call Service” Publish pipeline step. In our example, if further modification to the

aggregated result message is needed, the Split pipeline step could be followed by another pipeline step,

perhaps either a Transform – Xslt, Code or Rules-WF pipeline step.

However, more granular control over the collection of Neuron ESB Messages returned from the Execution

Block can be obtained by changing the join type property from Wrapper to Code. This results in access to

the Code Editor for direct modification of the collection. An example of C# code used within a Join is shown

in Code Fragment 6:

using (System.IO.StringWriter sw = new System.IO.StringWriter())

{

 using (XmlTextWriter xw = new XmlTextWriter(sw))

 {

 //writes <QuoteCollection> root element

 xw.WriteStartElement("QuoteCollection");

 foreach (PipelineContext<Neuron.Esb.ESBMessage> c in splits)

 {

 //adds <QuoteResult>...</QuoteResult>

 xw.WriteRaw(c.Data.ToXml());

 }

 //writes </QuoteCollection>

 xw.WriteEndElement();

 xw.Flush();

 }

 //Replace original request message with new aggregated response message.

 Neuron.Esb.ESBMessage esbMsg = new Neuron.Esb.ESBMessage();

 esbMsg.FromXml(sw.ToString());

 context.Data = esbMsg;

}

Code Fragment 6: The code sample demonstrates how to aggregate the responses returned from all the service calls

using an XmlTextWriter. Each service call response is represented by a PipelineContext object (c) within the splits

collection. This is exactly what happens when using the Wrapper join type.

http://schema.neuron.sample/broadcast/result
http://schema.neuron.sample/broadcast/result
http://schema.neuron.sample/broadcast/result

When using the Code join type, the original Neuron.Pipelines.PipelineContext (which contains the original

unaltered client response Neuron.Esb.ESBMessage) as well the list of Neuron.Pipelines.PipelineContext

objects processed by the Execution Block, are passed into the Code Editor as arguments represented by the

variables “context” and “splits”. As shown in Code Fragment 5 above, entirely custom xml can be created

to aggregate the response messages collected from the Execution Block by iterating through the splits

collection using a foreach construct.

Lastly, to return the newly created aggregated XML response message to the remaining steps of the

pipeline, the Neuron.Esb.ESBMessage assigned to the current context (represented by the context.Data

variable) must be replaced with a new Neuron.Esb.ESBMessage containing the aggregated XML.

Return Result

The final piece of the pipeline is a Cancel pipeline step named “Return Result”. This is where a decision will

be made regarding what to do with the aggregated response message returned from the Join. In the Scatter

Gather pipeline example, a Cancel pipeline step is used because the response message is being returned to

the calling client. Using a Cancel pipeline step essentially stops the response message from continuing

beyond the pipeline instance and being published to the bus. Instead, the response message is returned to

the original calling client. This will happen AS LONG AS THE ORIGINAL REQUEST IS A REQUEST/RESPONSE

TYPE OF REQUEST. This is configured by either manually setting the Semantic property of the original

Neuron.Esb.Message to “Request” or automatically, by ensuring that the Neuron Client Connector’s

Messaging Pattern property located on the Binding tab is set to “Request-Reply” rather than “Datagram”.

However if required, the response message can be forwarded to the original Topic, or another Topic by

either removing this step, or replacing it with a Publish pipeline step. In this latter case, the Neuron Client

Connector’s Messaging Pattern should be set to Datagram, and the associated code to send the client

request to Neuron (shown in Code Fragment 2) should be altered appropriately using the IOutputChannel

(or similar interface) so as to avoid client timeout errors.

Configuring the Solution

The accompanying Neuron ESB Configuration file named, ScatterGatherPipelineSample.esb, is configured

to support the Scatter Gather solution described in this paper. The configuration file can be opened within

the Neuron ESB Explorer. Within it are the following elements:

Neuron Topics

A specific Topic topology was created to support publishing the original request message to the bus, as well

as routing the message to multiple web services (service endpoints represented by Neuron Service

Connectors), each hosted by a different company vendor, specifically “New Mart” and “Old Mart”. These

company vendors are responsible for responding to the incoming quote request submitted by the client.

One web service is associated with the Finance.Vendors.NewMart.QuoteService (the “New Mart” vendor)

Topic, while the other is associated with the Finance.Vendors.OldMart.QuoteService (the “Old Mart”

vendor) Topic. When using Topics to route to service endpoints it’s important to use an understandable

Topic Topology. This will allow for more intuitive mappings between service endpoints and Topics i.e. Topic

-> Subscriber -> Service Connector -> web service endpoint

The following Topics are configured under the Messaging:Topics:Topics section of the Neuron ESB

Explorer:

 Root Topic: Finance

 Sub Topics: Finance.Purchases

Finance.Vendors

 Finance.Vendors.NewMart

 Finance.Vendors.NewMart.QuoteService

 Finance.Vendors.OldMart

 Finance.Vendors.OldMart.QuoteService

All distributor purchase requests are originally submitted to the Finance.Purchases Topic, while all price

quote requests to Vendors are submitted to Finance.Vendors.<vendorName>.QuoteService.

Neuron Parties

Neuron ESB Parties are used to communicate to, and receive messages from the Neuron ESB Publishing

Services. Every Topic represents an instance of a Neuron ESB Publishing Service. What messages a Neuron

ESB Party is allowed to send, and what messages they can receive is determined by what subscriptions are

assigned to them. Subscriptions are generally defined by using Topics with the optional addition of

Message Patterns.

Note: Message Patterns provide more granularity to Topic based subscriptions through the addition of

context and content based routing options.

Neuron ESB Parties can be defined as either a Publisher, Subscriber or both. How they are defined is a

function of the Topic subscription rights assigned to them, Send, Receive or both.

In the scenario outlined in this paper, the distributor submits a purchase request to the service endpoint

hosted by Contoso. This service endpoint is represented by a Neuron Client Connector,

ContosoQuoteService. The Neuron Client Connector is configured to submit all incoming purchase request

messages to the bus using a Neuron ESB Publisher. That in turn is configured to run the Scatter Gather

pipeline before messages are published to the bus. To support this, the following Publisher is configured

under the Messaging:Topics:Publishers section of the Neuron ESB Explorer and assigned to the Neuron

Client Connector:

Name: ContosoQuoteServicePublisher

Subscriptions: Finance.Purchases Send

 Finance.Vendors.*.QuoteService Send

 Pipelines: Scatter Gather On Publish event

Note: When using Topics and sub Topics, wildcard subscription notation (*) can be used. In the example

above, Finance.Vendors.*.QuoteService would allow the publisher to submit and receive messages from

ANY vendor specified between the two periods (.). The subscription is resolved dynamically at runtime.

Each vendor, Old Mart and New Mart, maintain their own Quote Service, represented by a Neuron Service

Connector. To receive a purchase request message from the Scatter Gather pipeline, each one is configured

to use a specific Neuron ESB Subscriber. The respective Subscriber receives messages from the Topic its

configured for, and forwards those messages to the Neuron Service Connector, which in turn, calls the

vendor’s Quote Service endpoint url. To support this, the following Subscribers are configured under the

Messaging:Topics:Subscribers section of the Neuron ESB Explorer, each assigned to their respective

Neuron Service Connector:

Name: NewMartQuoteServiceSubscriber

Subscriptions: Finance.Vendors.NewMart.QuoteService Receive

Name: OldMartQuoteServiceSubscriber

Subscriptions: Finance.Vendors.OldMart.QuoteService Receive

Neuron Service Endpoints

Neuron Service Endpoints are used to either host service endpoints, (essentially using standardized web

service protocols to expose a Topic publishing service to receive messages) or, to communicate to existing

service endpoint urls, (Neuron sends a message from the bus to the specific service endpoint url). The

former is regarded as a Neuron Client Connectors, whereas the latter is a Neuron Service Connector. Both

are a type of Neuron Service Endpoint.

In the scenario outlined in this paper, the distributor submits a purchase request to the service endpoint

hosted by Contoso.

To support this, the following Neuron Client Connector (representing the Contoso endpoint) is configured

under the Connections:Endpoints:Service Endpoints section of the Neuron ESB Explorer:

 General tab: Name: ContosoQuoteService

 Client Connector tab: URL: http://localhost:9001

 Client Connector tab: Publisher Id: ContosoQuoteServicePublisher

 Client Connector tab: Topic: Finance.Purchases

 General tab: Binding: WSHttp

 Security tab: Security: Message:Windows

Client Connector tab: Capture custom headers

The following Neuron Service Connectors, representing the existing Quote Services for each respective

vendor, are configured under the Connections:Endpoints:Service Endpoints section of the Neuron ESB

Explorer:

 Name: NewMartQuoteService

 URL: http://localhost:8732/

 Subscriber Id: NewMartQuoteServiceSubscriber

 Binding: BasicHttp

 Name: OldMartQuoteService

 URL: http://localhost:8731/

 Subscriber Id: OldMartQuoteServiceSubscriber

 Binding: BasicHttp

Neuron Data Store

XML documents, XSD Schemas and XSL Transformation documents can be persisted and referenced from

the Neuron Data Store configured under the Data section of the Neuron ESB Explorer. XSD Schemas and

XSL Transformation documents can be referenced directly within the Validate – Schema and Transform -

XSLT pipeline steps. Additionally, the Neuron Data Store can be accessed at runtime through the

Neuron.Esb.Internal.PipelineRuntimeHelper.ClientContext.Configuration object to dynamically retrieve

stored documents.

In this sample, the following XML Documents at stored only for referenced. They are not retrieved at

runtime.

Name: ClientPurchaseRequest

Description: Sample purchase request submitted by distributors

to the Contoso web service

Name: NewMartQuoteRequest

Description: Sample Quote request message expected by the New

Mart Quote Service

Name: OldMartQuoteRequest

Description: Sample Quote request message expected by the Old

Mart Quote Service

Name: QuoteResult

Description: Sample Quote result message returned by both Old

Mart and New Mart Quote Services

The following XSL Transformation documents are retrieved at runtime to transform the incoming purchase

request to the expected format of the vendor’s Quote Service.

 Name: QuoteRequest_To_NewMartQuote

Name: QuoteRequest_To_OldMartQuote

Running the Solution

Open the Neuron ESB Configuration

1. Unzip the NeuronSamples.zip located in /Samples directory under the default Neuron installation

directory. Navigate to the following folder: \Samples\ServiceTutorials\Scatter Gather Pattern

2. Start Neuron ESB Explorer; select the Open radio button on the Open ESB Configuration dialog and

specify the ScatterGatherPipelineSample.esb configuration file in the File Location panel.

3. Set the Neuron ESB Service to use this configuration by selecting the Configure Server menu item

and specifying the ScatterGatherPipelineSample.esb configuration file. Restart the Neuron ESB

Service using the Server Status dropdown menu item.

4. Close the current ESB Configuration file within Neuron ESB Explorer and immediately select the

Connect radio button.

Setup the Quote Services

1. Open the Visual Studio 2008 Scatter Gather Solution.sln solution and rebuild it.

2. Navigate to the NewMartQuoteService Visual Studio 2008 project’s BIN\DEBUG directory and run

the NewMartQuoteService.exe Console Application. This hosts the New Mart Quote Service.

3. Navigate to the OldMartQuoteService Visual Studio 2008 project’s BIN\DEBUG directory and run

the OldMartQuoteService.exe Console Application. This hosts the Old Mart Quote Service.

Run the Sample

1. Navigate to the ContosoClientRequest Visual Studio 2008 project’s BIN\DEBUG directory and run

the ContosoClientRequest.exe Console Application. This will submit the purchase request to the

Neuron Client Connector. Once the console application is running you MUST press the ENTER key

on the keyboard to submit the request to Neuron.

Results

Once a distributor submits a purchase request (by running the ContosoClientRequest.exe Console

Application and pressing ENTER) to the Neuron hosted service endpoint (Neuron Client Connector), the

Scatter Gather pipeline is executed. The pipeline resolves the vendor service endpoints, transforms the

original purchase request as necessary, sending it to individual Quote Services of New Mart and Old Mart

1. A transformed purchase request will be written to the Console Application window hosting the

NewMartQuoteService as in the figure below:

2. A transformed purchase request will be written to the Console Application window hosting the

OldMartQuoteService as in the figure below:

Each vendor’s Quote Service will return a result. These results are aggregated within the pipeline and

returned to the distributor making the purchase request. This is represented by the result written to the

Console Application window as in the figure below:

1. The returned results from both Quote Services are enclosed within the QuoteCollection element

and written to the Console Application window that made the original purchase request. This also

includes the full WSHttp envelope.

Pipeline Designer

All pipelines with the exception of the Code pipeline step are configured by selecting and setting their

properties in the property grid located at the bottom right of the pipeline designer. The Code pipeline step

is configured by selecting the “Edit Code…” option from the short cut menu that is available when right-

clicking the Code step in the pipeline designer. See the pipeline documentation for more information.

Figure 3: The Neuron Pipeline Designer displaying the Scatter Gather pipeline. Property Grid at the bottom

right displaying the properties of Split pipeline step named “Broadcast and Aggregate”. Note the

Synchronous property is set to False, allowing a broadcast into the Execution Block (labeled “Steps”) for

processing rather than each message processed one at time”.

