
Neuron ESB Training: Fundamentals

Overview
This training will provide you with the knowledge necessary to begin using Neuron ESB and understand

the foundation upon which it is built. After this training you will be able to:

• Describe the core concepts around which Neuron ESB was built

• Install Neuron ESB

• Create a new Neuron ESB configuration, setup a Topic and Publishers/Subscribers (Parties)

• Work with the Neuron ESB Test Client

• Understand the basics of the Neuron ESB Client API and be able to write code to send and

receive asynchronous and synchronous messages

You should complete the exercises provided at the end of the training to confirm your understanding of

the material presented.

Prerequisites
• .NET 4.7.2

o (Neuron ESB Version 3.7 requires 4.7.2, Version 3.7.5 requires 4.8)

• RabbitMQ installed

• Erlang installed

• Visual Studio 2013

Concepts
Neuron ESB is an Enterprise Integration platform built on Microsoft .NET. Neuron’s ESB capabilities

allow it to be used as a distributed Messaging Oriented Middleware (MOM) with centralized

management, as Web Services intermediary and router (Service Broker), an Enterprise Application

Integration (EAI) platform, Workflow platform or any combination thereof.

Publish and Subscribe

As the diagram below depicts, Neuron ESB’s messaging core and the publish/subscribe paradigm is the

foundation which all other functionality can easily leverage:

By allowing all other integration components (i.e. Adapters/Connectors, Services and Workflows) to

work seamlessly with the publish/subscribe core means Neuron ESB is inherently capable of functioning

in asynchronous and 1-many or broadcast scenarios. Neuron ESB messages may also be sent using a

Request Semantic or synchronous Message Exchange Pattern (MEP) which allows Neuron ESB to also be

used for point-to-point communication. Neuron ESB’s messaging core is predicated upon a hierarchical,

Topic based pub/sub messaging system in which Parties send (publish) messages to Topics and Parties

receive (subscribe) messages published to Topics.

Topics

Neuron ESB provides a powerful, hierarchical Topic based publish and subscribe messaging system

where publishers can label each message with the name of a Topic, rather than addressing it to specific

recipients. Topic based messaging systems tend to be more intuitive as they can be closely modeled

after the specific business requirements and/or the existing organizational hierarchy. Neuron ESB

manages sending the message to all eligible recipients that have expressed interest in receiving

messages on that Topic. This form of asynchronous messaging is a far more scalable architecture than

point-to-point alternatives, since message senders (publishers) need only concern themselves with

creating the original message and can leave the task of servicing recipients (subscribers) to the

messaging infrastructure.

Topic-based publish and subscribe messaging systems share several common attributes some of which

are:

• Subscribers subscribe to one or more topics and only receive messages that are of interest to
them

• The publishers have no knowledge about the subscribers, including how many there are or
where they live

• The subscribers have no knowledge about the publishers, including how many there are or
where they live

• New systems (publishers or subscribers) can easily be added or removed from the flow of
information, without code changes.

API

Pub / Sub

Client

Connectors

Service

Connectors

Workflow

Endpoints

Adapter

Endpoints

This type of messaging architecture sends messages only to the applications that are interested in

receiving the messages without knowing the identities of the receivers. There are many other reasons to

adopt a hierarchical Topic taxonomy.

• It allows for more meaningful self-describing subscriptions which can model events, systems,
categories or functions.

• Hierarchical Topics can be easier to manage, providing the hierarchy doesn’t extend beyond 3 to
5 levels.

• They are more intuitive as they can be modeled to represent specific resources, people or
systems to route messages to.

• Subtopics can be used to describe different versions of existing services that messages may be
routed to.

A hierarchical Topic taxonomy should be an orderly, documented set of classifications that have
contextual relationships to the messages on the bus and should be organized and related to one another
in a meaningful way. Topic taxonomies can differ across message population; for example, one set of
messages may be categorized as “infrastructure” types, whereas other messages may be categorized as
“business” activities, events or requests.

However, care should be taken to ensure that sub topics are not named to represent a specific action as

the message published should describe the action. This way if the action changes, the sub topic can

remain consistent.

For example, a user may create a root topic called “Account”, but then create several sub topics such as:

• Account.Loan

• Account.Loan.Debt

• Account.Loan.Debt.V2

• Account.Loan.Payment

• Account.Loan.Arrears

• Account.Loan.Cancellation

When hierarchical (sub topics) Topics are created, they can be logically mapped to recipients like Service

and Adapter Endpoints or even to different versions of services that those endpoints represent.

Transports and QOS

Neuron ESB Topics control not only the path/route of the messages in Neuron ESB but also the Quality

of Service (QOS) which is configured by choosing a specific Transport for the Topic. QOS attributes are

always configured at the “root” Topic level and affect all of the respective sub topics, including whether

or not durable messaging is enabled.

Neuron ships with 5 transports for Topics

• TCP – This transport is based on the WCF NetTcp binding and offers ordering, security and

session reliability as options. It is not a durable transport so message loss can occur if no

subscribers are online when a message is published. TCP requires Port configuration and is

commonly used in the following scenarios:

o Request/Response style messaging where neither durability nor transactions are

required. A good example would be web service traffic.

o When the Neuron ESB Client API is hosted in custom applications existing on machines

REMOTE to the Neuron ESB server

o Multiple instances of the same Party must receive the same messages

• Named Pipe – This transport is based on the WCF NetNamedPipe binding. This transport is

slightly faster than TCP, and easier to configure (does not require Port configuration). However,

this transport cannot be configured for topics that will be utilized by remote applications hosting

the Neuron Client API. It is not a durable transport so message loss can occur if no subscribers

are online when a message is published. It is commonly used in the following scenarios:

o Request/Response style messaging where neither durability nor transactions are

required. A good example would be web service traffic.

o When the Neuron ESB Client API is hosted in custom applications that coexist on the

SAME machine as the Neuron ESB server

o When all messaging traffic is generated by configured Service or Adapter Endpoints (i.e.

all messaging is local to the Neuron ESB Server) and neither durability nor transactions

are required.

o Multiple instances of the same Party must receive the same messages

• MSMQ – This transport is based on the WCF NetMsmq binding. It is optionally a durable and

transactional transport so parties that are not online when a message is sent can receive

messages when they reconnect. The MSMQ transport provides a “pull” style subscription model

so subscribers cannot be overloaded by messages. Because transactions are supported, the

ambient transaction can be accessed within the Receive Handler of the Neuron ESB Client API or

within a Neuron ESB Business Process. When configured as an in-memory transport (i.e.

Durability and Transaction properties set to False) this transport can be faster and more efficient

than TCP. This transport cannot be used to send messages greater than 4 MB in size but can

provide guaranteed, once only delivery of messages across the bus. It is commonly used in the

following scenarios:

o Where message loss is not acceptable.

o One way (multicast/datagram) message patterns

o Where XA style transactional support is required

o Subscribers must receive messages, yet may not be consistently online

o Ordered messaging

• RabbitMQ – This transport is based on RabbitMQ which is an implementation of the AMQP open

standard for messaging middleware. It is optionally a durable transport so parties that are not

online when a message is sent will receive messages when they reconnect. This transport can

be used as an alternative to MSMQ as a topic transport. Although this transport does not

support atomic transactions, it does support ack/nack as well as batch style transactions. It also

does not have the 4MB message size limit that MSMQ has. It is commonly used in the following

scenarios:

o Where message loss is not acceptable.

o One way (multicast/datagram) message patterns

o Subscribers must receive messages, yet may not be consistently online

o Ordered Messaging

In addition to Transports, Neuron ESB allows other QOS of elements to be configured at the Topic level:

• Auditing (message tracking)

• Compression

• Publisher-based throttling

• Encryption

Parties

A Party may subscribe to 1 or more Topics or sub Topics. Parties use Subscriptions to restrict which

Topics they can publish messages to, as well as determine what messages they are interested in

receiving from the bus. Parties that send messages are known as publishers, and parties that receive

messages are known as subscribers. A party could be both a publisher and a subscriber. One or more

subscriptions can be assigned to a Party.

Subscriptions

A Subscription is composed of a Topic (or sub Topic), the permission in which a message can be sent to

or from that Topic (i.e. Send/Receive) and can be further optionally restricted using one or more

Conditions.

A Condition is either a preexisting or ad hoc filter expression (using predicates) that can include message

header properties as well as message content. Sometimes this is referred to as “Content Based

Routing”.

Messages

A message is information that one Party sends to or receives from the bus. A message contains both

data (the information that some other system, resource or person may be interested in) as well as

metadata. Respectively, these are referred to as the payload and header (or context) properties of the

message. Both are defined as parts of a Neuron ESB Message.

The payload of a Neuron ESB Message can be one of several formats:

• Serializable .NET Object - The ability to pass .NET objects provides flexibility for developers who

prefer use of objects over XML

• Binary data - The ability to pass binary data provides flexibility for developers who have to share

content that is neither serializable nor XML

• Text data – Any type of string data

• XML data – Any XML data. XSD schemas are not required to use XML as the payload

• JSON data – An alternative to XML for transmitting data between a server and web application

Parties are created within the Neuron ESB Explorer and are represented by a logical name, often

referred to as the Party ID, Subscriber ID or Publisher ID.

Because Parties control the interaction of messages to Topics, all Adapter Endpoints, Workflow

Endpoints, Client Connectors and Service Connectors that want to either publish or subscribe to Topics

MUST be configured with a Party. The configured Party will determine what messages are received by

Adapter Endpoints, Workflow Endpoints, or Service Connectors, and where (what Topic) messages will

be published to by Adapter Endpoints and Client Connectors.

A Party may also optionally manipulate the message it is sending or the message it receives. This

manipulation occurs via a Neuron ESB Business Process or Workflow.

Business Processes

Processes are used within integration and messaging products to provide real-time workflow and

business process capabilities for message processing and/or to implement specific integration

patterns. For example, when a user or system submits a message to the bus, specific steps may first

need to happen. These steps may include validating and transforming the message before it is published

to other subscribers. VETO is a common integration pattern that stands for Validate, Enrich, Transform,

Operate (see Figure below). The VETO pattern and its variations can ensure that consistent, validated

data will be routed throughout the ESB.

Neuron ESB provides a unique process implementation that goes beyond the industry standard. Many

patterns, like VETO, can be easily developed using the Neuron ESB process designer. The Neuron ESB

Process Designer ships with 46 configurable process steps that do everything from validating a message

to querying a web service or database. Users can also create “custom” process steps for reusability. For

Although Workflow Endpoints MUST be configured with a Party, Pub/Sub Messaging is optional for

Client Connectors, Service Connectors and Adapter Endpoints. Party configuration is not necessary for

these because they can interact directly with each other as well as Business Processes, without the

need to send and receive messages over Topics

example, the figure below displays a VETO pattern using the Neuron ESB Process Designer. When using

Neuron ESB, this pattern can be implemented without any external custom code dependencies.

The Neuron ESB Process Designer significantly extends the ability to develop more complex patterns and

processes without introducing additional workflow technologies into a project. For example, a complex

business process may involve the need for custom code execution, a decision based on external criteria,

calling to a web service or data store, rerouting a message, but overall, being able to maintain

transactions and deal with the exceptions as they occur.

Within Neuron ESB more than one Business Process may be configured by a Party and conditions may

be set inside or outside of the process to control process execution.

A Business Process may be attached directly to client connectors and adapter endpoints, running in

publish mode, allowing these endpoints to directly execute the Business Process without needing to

participate in the pub/sub model.

It is important to understand that within Neuron ESB’s pub/sub architecture, Business Processes are

connected to Parties, Client Connectors or Adapter Endpoints, not Topics. In fact, a Business Process

may be used to alter the Topic of a message and thus alter the message flow. A Party may also be

hosted in your own executable on remote machines. This means that Business Process logic attached to

those Parties is inherently distributable while being centrally maintained. If a Business Process is either

added or modified on the server, the Party, regardless of hosting environment and location, will

automatically get the updated Business Process and execute it within the environment and location it is

hosted in. This allows Neuron ESB to be used in ways not available to server-only products and thus

allows Neuron ESB to function as a complete distributed, Service Oriented Architecture (SOA) platform.

Endpoint Hosts

In previous versions of Neuron ESB, the Neuron ESB Runtime Windows Service (esbservice.exe) was

used to host all Adapter and Service Endpoints, as well as all Messaging Publishing Services and all

internal Services. These services were isolated in their own .NET AppDomains within the Neuron ESB

Runtime service. However, a fault tolerant hosting environment was provided for the Neuron ESB

Workflow Engine. The hosting was embodied by Neuron ESB Availability Groups. Availability Groups

were used to load balance the execution of Workflow Instances across multiple servers in

dedicated/isolated host processes.

Availability Groups were designed with built-in clustering to achieve high availability and fault tolerance

without the need to deploy Microsoft Windows Failover Cluster Services. Servers within a Neuron ESB

Deployment Group could be assigned either Primary or Failover roles which allowed failed workflows to

automatically rollover onto available servers and start where they left off, providing both resiliency and

reliability for mission critical functions.

In Neuron ESB 3.7, we’ve refactored and extended Availability Groups to allow them to host Adapter

and Service Endpoints. As a result, Availability Groups were renamed to Endpoint Hosts and have taken

on a new and expanded role within Neuron ESB.

Prior to the introduction of Endpoint Hosts every Adapter and Service endpoint competed for the CPU

processing of a single executable (i.e. esbservice.exe). Other competitors for those processing cycles and

threads included Neuron ESB’s own internal services, which would sometimes take precedent. In some

cases, either an internal service or a specific endpoint could consume the majority of processing cycles,

leaving other endpoints waiting for available threads to be returned to the pool before being allowed to

service requests. Additionally, even though all endpoints and internal services were encapsulated in

their own .NET AppDomain, it did not preclude the possibility that one misbehaving Business Process,

Adapter Endpoint or, custom code written by a customer could crash the Neuron ESB Runtime process

(i.e. esbsevice.exe).

Endpoint Hosts alleviates these issues as each runs as an isolated process (i.e.

NeuronEndpointHost.exe), with its own allocation of resources and threads. Using Endpoint Hosts,

endpoints can be isolated into discreet, lightweight processes and deployed across multiple machines.

Workflows

Using workflow, it is possible to build business processes that can span days, weeks, or even months

coordinating business activities, responding to business inputs, and integrating business systems.

Neuron ESB 3.7 provides a complete Workflow hosting environment for running workflows as part of, or

independent of, your ESB messaging solution.

Neuron ESB’s Workflow is built on WF that was originally introduced in .NET 4.0 and improved upon in

.NET 4.7. Although Neuron ESB uses WF to manage workflow execution and persistence, significant

work was undertaken to make WF manageable, fault tolerant and truly enterprise-ready, including the

development of the following:

• Workflow Designer

o 84 Built-In Workflow Activities

o Support for Custom Activities

o Workflow Simulation/Testing

• Workflow Types

o Normal Workflow – Used when a workflow instance is executed for each message

received and a response is not expected

o Request-Reply Workflow – Used when a workflow instance is executed for each

message received and a reply message is expected

o Correlated Workflow – Used when a set of messages is to be processed by the same

instance of a workflow

• Workflow Execution Environment

o Workflow Endpoints – Associated with a specific workflow definition and acts as a

subscriber to messages (also associated with a subscribing Party)

• ESB Message Integration

o Message Auditing – Messages can be audited to the Message History table

o Failed Message Reporting – Failed messages are tracked to the same failed messages

table

o Publish to Topics – Messages can be published back to the bus from within a workflow –

either as a multicast or request/reply message.

o Service and Adapter endpoints – Workflow activities allow the direct integration of

existing service and adapter endpoints within a workflow. This allows the user to avoid

publishing messages to the bus and instead sends them directly to the endpoint.

• Workflow Tracking and Playback

o Users can observe the execution history and state transitions of the workflow

o Users can step through the execution of the activities for the workflow, viewing both

the input arguments and the values that are output by each workflow activity

o Users are able to explore error conditions and view exception messages for errors that

occurred during the workflow

• Workflow Control and Monitoring

o Workflow Tracking provides users with control commands such as Start, Suspend,

Cancel, Abort or Delete that can be used against any selected Workflow instance or

group of Workflow Instances

o A WMI Performance Counter group is available with Workflow; “Neuron Workflow

Endpoints”, which exposes a number of counters, including:

▪ Aborted

▪ Active

▪ Cancelled

▪ Completed

▪ CompletionRate

▪ Errors

▪ Idle

▪ PendingEvents

▪ PendingTime

▪ Persisted

▪ Terminated

▪ WaitTime

▪ Warnings

o These WMI counters can used by third party tools for remote monitoring solutions as

well as used within Microsoft Performance Monitor

Adapter Endpoints

Neuron ESB Adapters (used in adapter endpoints) are versatile and flexible bridges that connect external

applications, protocols, transports or databases. Adapters can optionally be used as part of the pub/sub

model, allowing them to publish messages to the bus, or receive messages from the bus. They can be

configured to also work outside of the pub/sub model, either directly calling business processes when in

publish mode, or directly used from within business process when in subscribe mode.

Neuron ESB ships with many adapters, some of which are listed below. An extensibility interface in .NET

C# exists that allows users to build “custom” adapters that can be directly managed and hosted by

Neuron ESB as Adapter Endpoints. An Adapter Endpoint is an instance of a Neuron ESB or custom

Adapter that is specifically configured to bridge a target source system.

* The list above includes most of the adapters included with Neuron ESB. Neuron ESB supports the use

of the Microsoft WCF LOB Adapters which can be purchased separately.

Service Endpoints

Neuron ESB supports two types of Service Endpoints: Client Connectors and Service Connectors. Client

Connectors are either REST or SOAP based Services hosted by the Neuron ESB runtime. Neither IIS or

WAS is required. Client Connectors are created through the Neuron ESB Explorer User Interface and can

support any Windows Communication Framework (WCF) Binding and Behavior.

In contrast to Neuron ESB Client Connectors, Service Connectors (also Service Endpoints) can optionally

function as configurable subscribers to the bus and route messages to existing REST or SOAP services

that preexist in the environment.

Service Endpoints function similarly to Neuron ESB Adapter Endpoints in so far as they serve as “bridges”

between external SOAP/REST based services. Like adapters Neuron ESB Service Endpoints can be

optionally be configured with Parties to facilitate communication to and from Topics to the external

SOAP/REST services, or can be used outside of the pub/sub model.

Client connectors are publishers and therefore can call business processes directly. While service

endpoints are subscribers and can be called directly from within a business process. In either case this

bypasses the pub/sub model, in much the same way as can be accomplished with adapters.

The relationship between Parties, Topics, Adapter Endpoints, Service Endpoints, Processes and

Workflows is depicted in the figure below.

Installation
Neuron ESB is a self-hosting runtime application and environment and installs as a Microsoft Windows

Service. This means it does not require IIS or WAS (Windows Process Activation Services) to be installed

to run.

Neuron ships with an installer that will install the necessary files for using RabbitMQ as a transport. We

recommend using this installer even if you don’t need to install RabbitMQ. The associated MSI file

should only be used for silent installations.

Neuron ESB is downloadable as a 64 bit application. When you extract the contents of the download,

you will see two the necessary files for installation:

• InstallNeuronESB.exe

• Readme.html

• NeuronESB_v3_x64_Release.msi

To begin, double click InstallNeuronESB.exe and click Run.

The following screen should appear.

Click Next.

Accept the license agreement and click Next.

Enter the appropriate license key. Click Next.

Neuron ESB license keys are issued to you by Neuron ESB. If you do not have a license key, click the

“Don’t have a license?” link to request one.

Select the software packages to install. If you want to try out RabbitMQ-based topics, select Erlang and

RabbitMQ. Erlang is a prerequisite for RabbitMQ. Both of these packages are downloaded from the

Neuron ESB Web server during installation. If you select them make sure your machine has an internet

connection.

Click Next.

If your machine does not have an internet connection, the Erlang and RabbitMQ installation packages

can be downloaded and installed manually. See the README.html that’s included with the zip package

for download instructions.

Enter the path to install Neuron ESB or leave the default value. Click Next.

Select the options to install and click Next. Usually all options are selected.

The setup program can be used to install multiple instances of Neuron ESB. This allows the hosting of

multiple Neuron ESB Configurations on the same server. Since this is the first Neuron ESB installation,

just leave the default value of “DEFAULT” for the instance name and click Next.

Each Neuron ESB “Instance” installed is capable of being configured to run one Configuration,

commonly referred to as a “Solution” or “Application”. Solutions are created using the Neuron ESB

Explorer. Users may install up to 10 “Instances” on a single machine, allowing up to 10 different

Solutions to run concurrently.

Leave the default choices in place so that Neuron ESB is running as the Local System account. Click Next

to begin the installation. If you chose to install the Erlang software package, the installer will first

download it and then start the installation. The Erlang installer often gets hidden behind the Neuron

ESB installer. If you see this screen, look for the Erlang installer icon in the Taskbar and click on it:

Clicking on the Erlang icon in the Taskbar brings up the Erlang installer. Select the components to install

for Erlang. If the Microsoft DLL’s are not present, make sure to check that box. Click Next.

Set the installation folder. Click Next.

Choose the Start Menu Folder for the Erlang programs. Click Install.

When the installation completes, click Close.

If you chose to install the RabbitMQ software package, the installer will next download it and then start

the installation. The RabbitMQ installer often gets hidden behind the Neuron ESB installer.

Clicking on the RabbitMQ icon in the Taskbar brings up the RabbitMQ installer. Select the components

to install for RabbitMQ. Click Next.

Set the RabbitMQ install location. Click Install.

When the RabbitMQ installation completes, click Next and then Finish.

The Neuron ESB installation will continue.

Keep the default settings for the Event Processor Service User Account.

Keep the default settings for the Neuron Event Processor Port.

Installation of RabbitMQ Server is optional and is not required to use Neuron ESB 3.7. If

RabbitMQ Server is not installed, the Neuron ESB 3.7 installer will give you the option of

automatically downloading and installing Erlang and RabbitMQ Server. If you want to use the

new RabbitMQ Topics, but your computer does not have Internet access, please download and

install the following software packages before installing Neuron ESB 3.7. Neuron ESB 3.7 has

been upgraded to support Erlang version 23 and Rabbit MQ version 3.8.5.

• Erlang

• RabbitMQ Server

http://www.neuronesb.com/support/downloads/neuron30/prereqs/otp_win64_23.0.1.exe
http://www.neuronesb.com/support/downloads/neuron30/prereqs/rabbitmq-server-3.8.5.exe

Neuron will continue the installation process.

When the installation completes, click the Exit button.

Neuron ESB should now be installed.

Type services.msc into your run bar or navigate to the Services console through the admin tools. Scroll

through the list of services until you see the Neuron ESB v3 (DEFAULT; {Platform}) Service

You should see that Neuron ESB is installed to begin automatically but is not yet in a started state. Do

not start the service here. We will do that with Neuron ESB Explorer.

Navigate using your Start Menu to the Neudesic folder and choose the shortcut for Neuron ESB Explorer.

When the following screen appears, click the Configure Server button:

The Configure DEFAULT Server prompt will appear, which allows you to configure the Neuron ESB

runtime. Neuron ESB ships with a sample configuration that you initially configure the runtime to host.

An Error will be reported if an attempt is made to start the ESB Service before it has been

configured to run a solution using the Neuron ESB Explorer’s Configure Server dialog.

Click the ellipsis to open the folder browser, navigate to <Program Files>\Neudesic\Neuron ESB

v3\DEFAULT, and select the folder “Sample”:

Click the Select Folder button.

Select Enterprise from the Zone dropdown and localhost from the Active Deployment Group dropdown.

Click Save.

In Neuron ESB Explorer click File->Connect from the menu.

The Connect to Neuron ESB prompt will appear:

Leave the default setting set to “Override”. Click Connect. A prompt should appear like the following

provided you did not use Services Manager to start the Neuron ESB service directly:

Choose Yes.

The “Connect” option should only be used when remotely monitoring Neuron ESB running solutions. In

all other cases File->Open should be used to directly load the solution configuration within the Neuron

ESB Explorer for editing. The Connect option is NOT supported for editing solutions.

You should see the following main screen of Neuron ESB Explorer after start completes

Congratulations! You have installed Neuron ESB and it is running.

Before we continue to the next section of this training, we will describe what Neuron ESB Explorer is and

what it can be used for.

Neuron ESB Explorer is a Windows application that interacts with the running service and the

configuration folder which drives it. The configuration folder contains a collection of XML files which

represent the Neuron ESB artifacts such as Topics, Endpoints and Parties that are part of the Neuron ESB

solution.

The Neuron ESB Explorer may connect to a running instance using “Connect” mode or it may work using

the “Open” mode. The first method affects and communicates with the running instance of the Neuron

ESB runtime service and the ESB configuration that is has loaded into memory on startup. This is used

On Windows Server 2019, 2016, 2012, Windows 2008 R2, Windows 10 or any OS with UAC enabled you

must explicitly run Neuron ESB Explorer as administrator to change settings.

solely for remote monitoring and should not be used when editing the solution. The “Open” mode

allows opening of and manipulation of any Neuron ESB configuration including the currently loaded

configuration. There may be a few seconds delay between saving the opened configuration and seeing

the changes affect the ESB Service.

You can also create a “New” configuration, which is identical to “Open” mode except it provides a

completely new Neuron ESB configuration without any configured Topics or Parties.

The Neuron ESB Explorer navigation is accomplished through a combination of using the Navigation Tabs

to the left of the main panel and by using the Menu items along the top.

A brief synopsis of the Navigation Tabs follows (detailed explanations of each section can be found in

the Neuron ESB documentation or other training materials):

• Messaging – This is where you set up Parties, Topics and Conditions. Attaching and removing

Processes to and from Parties and creating Subscriptions is done here as well as choosing

Transports for Topics. Every Neuron ESB solution begins here.

• Repository – This is an inert data store of XML including imported Schemas, XSLT, XML and

WSDL Documents. The documents in this store can be accessed at runtime by Process steps.

For example, the Validate-Schema and Transform-Xslt steps can be configured to dynamically

reference documents from the repository at runtime for validation and transformation. Client

connectors can be configured to return WSDLs that are stored in the repository.

• Connections – This is where Service Endpoints such as Client Connectors and Service Connectors

as well as Adapters, Adapter Endpoints, and Workflow Endpoints are configured. This is

probably the most used tab in Neuron by developers after they have setup their Topics and

Parties.

• Security – This is where encryption keys, certificate configurations and user names and

passwords are configured. Impersonation credentials for adapters are also configured here.

• Processes – This is where Processes and Workflows are built. They can also be tested and

debugged using the Process tester or Workflow Designer. This is also where you can import an

existing workflow.

• Deployment – This is where basic and advanced deployment options are chosen including

Zones, Deployment Groups, Endpoint Hosts and Environment Variables. By default, most of

these choices and settings are configured for you when you create a Neuron ESB configuration.

However, certain advanced scenarios such as server farms or housing multiple deployment

groups will require changing these settings. Additionally, resources that may be used within the

solution such as Neuron ESB’s underlying queues and the Neuron ESB Audit Database as well as

all the Neuron ESB service runtime instances, both local and on remote machines, can be

managed here. Note: To use Workflows a Database must be configured.

• Activity – This tab can be used to access real time message functionality, endpoint health of

Client Connectors, Service Connectors, Topics, Adapter Endpoints and Workflow Endpoints. For

Audited topics you can see message history and failed message history. Workflows instances

and their current state can be seen from Workflow Tracking.

The Menu items along the top of immediate interest are:

• File – This allows users to open (offline) existing configurations, close, save and create new

configurations. Users can also connect to running instances (online) and import/export Neuron

ESB configurations. There is also a Most Recently Used list implemented that will saves the most

recently opened solutions.

• View – This allows you to see a running manifest of the changes made to the open configuration

since the last save. It also allows you to navigate just to the Getting Started screen and launches

the Samples explorer

• Tools – This provides a shortcut to launching Neuron ESB Test Clients, various Windows

management utilities and modify the Neuron license key

• Launch Test Client – Provides a shortcut to quickly launch up to 4 Neuron ESB Test Clients

• Running dropdown – This allows recycling of the Neuron ESB service from Neuron Explorer

instead of using the Service Control Manager

• Event Log – Opens the Neuron ESB v3 Event Log on the local server

• Endpoint Health – Provide a shortcut to quickly navigate to the Endpoint Health monitor in the

Activity tab

• Configure Server – This brings up a dialog which allows you to manipulate settings in the .config

file for the local Neuron ESB Windows Service. Any change here requires a full service restart.

This is where the Neuron ESB Configuration Folder, deployment group, logging options and

performance options can be set and modified. Configure Server is also accessible by navigating

to the Deployment ->Manage ->Servers screen.

• Category Filter – Allows you to filter which entities are displayed by their category

Exercise – Configuring Publish/Subscribe

Neuron ESB Configuration

We will now create a Neuron ESB configuration (Solution/Application) from scratch and set up basic

communications. If Neuron ESB Explorer is still running, choose the File option on the menu and select

Close. If you have closed the Neuron ESB Explorer, then navigate to the shortcut using your Windows

Start Menu.

Using either path will bring you to the default view in Neuron ESB Explorer. Choose the “New” option

from the File menu.

You should see something like below:

Select File->New and you should see this:

Notice that the Status Bar under the Menu items and above the Navigation Tabs is yellow. Also notice

that it says New Solution.

NOTE: A Yellow Bar indicates that the Neuron ESB Explorer has loaded an ESB configuration in “Offline”

mode. Whereas a Green Bar indicates that the ESB Configuration has been loaded from a running

Neuron ESB runtime service instance, i.e. in “Online” mode.

At this moment we are working in memory. No actual ESB configuration entities have been created yet.

The first thing we’re going to do is save the ESB configuration to disk.

Choose File from the top-level Menu Items and then choose Save As…

Next you will see a manifest of the changes that were made like the image below. Even though you

haven’t added any entities yet, some are automatically created when you create a new configuration:

Click Save, and a standard Windows File Dialog appears:

The Neuron ESB configuration is stored in a folder. Prior to saving you need to create the folder that will

hold your configuration. Click the New Folder icon in the dialog (highlighted in blue above) and enter a

name for your ESB configuration (i.e. NeuronFundamentals).

Finally, select the folder and click the Select Folder button.

A prompt is displayed indicating the configuration was saved and which version you are on:

Click OK and you should see something similar to below.

Notice that the path to the ESB configuration now shows in the Status Bar and the color of the bar is still

yellow.

At this moment the new ESB configuration is not the ESB configuration that is currently running. For that

we need to use Configure Server from the Menu Items.

When you click Configure Server you will see the Dialog similar to the one depicted below (by default

the Neuron ESB Service is not configured to run any configuration, previous in this guide you had

configured it to use the Sample configuration):

Select the ellipsis next to the ESB Configuration Folder text box to select the folder you previously

created and click the Select Folder button:

Note that the Active Deployment Group changes to your machine name. When you create a new

configuration, the default active deployment group is the name of your machine:

Also, adjust the Trace Level to verbose. Click on the Logging tab and verify the Trace Level dropdown list

is set to Trace errors + warnings + info + verbose:

Verbose tracing can be of great benefit while developing especially in services scenarios. Each time the

Neuron ESB Service is restarted a new log directory is created under the Neuron program files directory.

There is a separate log created for many components in Neuron ESB including the Topic Publishing

Services, Client Connectors, Service Connectors and Adapter Endpoints. This logging can reveal root

causes of issues and help you develop services scenarios because the entire SOAP packet is logged when

set to verbose.

NOTE: Most of this information is also written to the Neuron ESB v3 Windows Event log as well.

Click Save. When the Server Configuration Update window appears, click OK.

Use the “Running” Menu item to restart the Neuron ESB Windows Service.

The Icon will change color and the text will change showing the status. When the icon is green again the

Neuron ESB runtime instance has been reconfigured to run this newly created solution.

With the way our configuration is currently setup, there will be some functionality of Neuron ESB that is

unavailable, specifically:

• Auditing

• Workflow

• Cluster support for endpoint hosts

• Single Instance Mode

• Activity Session Monitoring

This is because Neuron ESB requires a database for these functions to operate. You can setup a database

for Neuron ESB after this tutorial: https://www.neuronesb.com/article/kb/resources/

Next, we will add a Topic and Two Parties. Navigate to the Messaging Tab and Choose Topics. Click on

the New button. Note the location of the button in the image below. All Neuron ESB artifacts use a

similar format for viewing, adding, editing and deleting:

Rename the Topic Books:

https://www.neuronesb.com/article/kb/resources/

Press the Apply button.

Click the Publishers option under Topics.

Click the New button. Change the name to BookMessagePublisher and Click the Edit Subscriptions

button in the editor toolbar:

Select Books in the dialog and click the arrow button that points to the right (outlined in red below):

To remove a topic subscription, you would click the arrow button that points to the left.

A Party can be locked down to only Send or Receive. When you create a new Publisher the default

permission is Send. For now, leave the default value and press OK and then press Apply.

You should now see something like this:

Click the Subscribers option under Topics.

Click the New button. Change the name to BookSubscriber and Click the Edit Subscriptions button in the

editor toolbar. Follow the steps above to add a subscription to the Books topic. Notice that when you

add the subscription to Books, the permissions for a subscriber default to “Receive”. Leave the default

value and press OK and the press Apply.

You should now see something like this:

Now hit Save.

The following dialog should appear:

The dialog shows the changes you have made to the ESB configuration since last changed.

Choose “Save” and then examine the next dialog before choosing OK. You’ll see that the dialog informs

you of the version of the ESB configuration that is being saved. By default, a new ESB configuration is

saved each time you hit Save and the previous version is stored in the history sub directory within the

folder you created to store the ESB configuration.

Next, we will set up a Topic using the RabbitMQ Transport and then we will subscribe to that Topic using

our existing Parties. In order to be able to add a queued Topic and be able to use it without restarting

you must do things in the following order.

If you installed Rabbit MQ with its default settings on the same box as Neuron ESB, the existing

configuration being used for this exercise does not need to be modified. However, if the default settings

for Rabbit MQ were modified or, Rabbit MQ is installed on a remote box, then the existing configuration

must be modified by doing the following.

1. Edit the existing Rabbit MQ server for the Active Deployment Group. Navigate to Deployment -

>Environments->Deployment Groups and select the “localhost” Deployment Group.

2. Click on the “RabbitMQ” tab, and double click on the existing Rabbit MQ entry to display the

Edit dialog box as shown below. Make any necessary edits and click “Save”:

3. If on a remote machine, ensure that the Rabbit MQ Management Pack is enabled on the Rabbit

MQ instance.

Once edited, the Deployment Group should appear as follows:

In this tutorial we are assuming that RabbitMQ is co-located with your Neuron ESB instance, and so the

default settings for RabbitMQ are adequate. However, for more information on configuring RabbitMQ,

to include how to connect to a remote instance of RabbitMQ, please refer to the article here:

https://www.neuronesb.com/article/rabbit-mq-topics/

https://www.neuronesb.com/article/rabbit-mq-topics/

Hit the Apply button followed by the File->Save to persist the changes.

Add a new Topic (name it BooksQueued), use the Networking tab to choose RabbitMQ and then hit

Apply. DO NOT PRESS SAVE YET.

Next add a subscription to the Topic for the Publisher and Subscriber previously created. Again, use the

Apply button but DO NOT PRESS SAVE.

The subscription for BookMessagePublisher should look similar to below. The subscription for

BookSubscriber should be similar, with the Direction equal to Receive.

Now you can click Save.

This particular order of configuration is required because of how Neuron ESB creates a publishing

service for a Topic. If this process is done in the wrong order with a queued Topic then you will have to

restart to see messages flow as expected.

You are now ready to use the Neuron ESB Test Client to verify and test your ESB configuration.

Neuron ESB Test Client

The Neuron ESB Test Client is one of the best tools you can use to verify and test your ESB configuration

and to verify that your Topic Taxonomy is configured as you expect it to be.

The Neuron ESB Test Client is a separate executable from Neuron ESB Explorer that can be accessed

directly via the main toolbar or through the Tools menu option in Neuron ESB Explorer. The Neuron ESB

Test Client is essentially a graphical UI wrapper around the Neuron ESB Client API. This same API can be

used and hosted in custom .NET applications to interact with the Neuron ESB bus in an event driven

manner.

For this training we’ll use the Tools menu in Neuron ESB Explorer and we will choose to launch 3

instances:

Connect one of the test clients as BookMessagePublisher.

Connect two of the test clients as BookSubscriber. To do this, select the appropriate Party Id from the

dropdown list and press the Connect button:

Using the BookMessagePublisher client click the send tab and choose the Books using the Topic drop

down.

Now type “Hello world” into the large text box and press the Send button:

“hello world” will appear in both BookSubscriber Receive tabs and the message count will be 1 in each

Now change the text in BookMessagePublisher to “hello world queued” and change the Topic to

BooksQueued.

Press Send

Notice only one of the test clients receives the message and increments the counter. This is the

expected behavior. When using Queued Topics only one instance of a given Subscriber Id will receive

the message. This makes sense when you realize that under the covers individual queues are created for

each subscriber id so the effect of two instances connecting with the same subscriber id will essentially

mean two clients using the same queue name thus accessing the same queue.

Close all three test clients.

Adding a Business Processes

Now that you have successfully tested this configuration, you are ready to add a Business Process

utilizing the VETO pattern discussed earlier in this guide. In the Neuron ESB Explorer, navigate to

Processes. Click on the New dropdown outlined in red below and select Create Process:

You will see a blank Business Process as shown below:

Click on the shape in the middle and you will see the Properties for the Process in the lower-right corner.

Change the Name property to VETO and press Enter:

Now you are ready to start adding Process Steps to the designer surface. On the right side of the

Neuron ESB Explorer is a complete list of all the built-in Process Steps that ship with Neuron ESB. Take a

few minutes to look at the steps available. If you were to create any custom Process Steps and add

them to Neuron ESB they would be listed here as well. Adding a Process Step to the designer is very

easy: click on the step you want to add and drag it to the place on the designer surface to add it. To

start building the Business Process, scroll through the Process Steps until you see the Validate – Schema

step and drag it to the shape titled VETO in the Process Designer:

The Validate – Schema step takes the message received by the Neuron ESB party and validates it against

a schema. To configure this step, click on the step where it says “Schema”. To specify a schema, click on

the Schemas property in the property grid and then click on the ellipsis button. The

NeuronSchemasCollectionItem Collection Editor will open:

Click the Add button and a new item will be added to the Members list on the left. Select the new item

(Schema) to see the properties listed on the right. Select the XmlSchema property and click the ellipsis

button to open the XML Document editor:

In the XML Document editor you can use the File menu to Open a schema or you can paste the contents

of a schema directly into it:

The schema above can be found in the file BookSchema.xsd in the Projects folder included with this

guide, or you can copy/paste this one:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="title" type="xs:string" />

 <xs:element name="author" type="xs:string" />

 <xs:element name="character" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string" />

 <xs:element name="friend-of" type="xs:string" minOccurs="0" maxOccurs="unbounded"

/>

 <xs:element name="since" type="xs:date" />

 <xs:element name="qualification" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="isbn" type="xs:string" />

 </xs:complexType>

 </xs:element>

</xs:schema>

After the schema is added to the dialog, click OK twice to close the dialog and the schema collection

editor. When you configured the Validate – Schema step you might have noticed that you can add

more than one schema to the collection. This allows Neuron ESB to validate a message against a

number of schemas at once. If you add multiple schemas to the collection, Neuron ESB will first attempt

to match the root element and target namespace against each schema in the list. Only when it finds a

match does Neuron ESB do a full schema validation. If the messages successfully validates against one

of the schemas in the list, the process flow will continue through the “Valid” execution block. If the

message fails validation against all the schemas, the process flow will continue through the “Invalid”

execution block.

NOTE: The Validate-Schema process step can also be configured to directly reference XSD Schemas

stored in the Neuron ESB Repository located within the Repository tab of the Neuron ESB Explorer.

Now that the Validate – Schema step has been configured we can add the transformation logic to our

process. Scroll through the Process Steps until you find the Transform – Xslt step. Drag it onto the

Process Designer, into the execution block for the “Valid” branch of the Validate – Schema step:

Just like with the Validate – Schema step, when you click on the Transform – Xslt step you will see a

tooltip stating that something isn’t correctly configured. In this case you need to add an Xslt. To

configure the transformation, select the Transform step and then the TransformXml property. Then

click the ellipsis button next to the property to open the XSLT Transform editor. Just like the Schema

collection editor you can use the File menu to Open an Xslt or you can paste the contents of an Xslt

directly into it:

The Xslt above can be found in the file BookTransformation.xslt in the Projects folder included with this

guide, or you can copy/paste this one:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="book">

 <html>

 <body>

 <h2>

 <xsl:value-of select="title"/>

 </h2>

 <h3>

 <xsl:value-of select="author"/>

 </h3>

 <table border="1">

 <tr bgcolor="#9acd32">

 <th align="left">Name</th>

 <th align="left">Since</th>

 <th align="left">Qualification</th>

 </tr>

 <xsl:for-each select="character">

 <tr>

 <td>

 <xsl:value-of select="./name"/>

 </td>

 <td>

 <xsl:value-of select="./since"/>

 </td>

 <td>

 <xsl:value-of select="./qualification"/>

 </td>

 </tr>

 </xsl:for-each>

 </table>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

After the Xslt is added to the dialog, click OK to close the Xslt Transform editor.

NOTE: The Transform – Xslt process step can also be configured to directly reference XSLT documents

stored in the Neuron ESB Repository located within the Repository tab of the Neuron ESB Explorer.

To see the output of the Transform – Xslt step you can add a Trace step to the process. The Trace step

behaves differently depending on the environment it’s being used in. If you are testing in design mode,

the Trace step outputs the contents of the message to the output window for viewing. During runtime

mode the Trace step will output the contents of the message to the Neuron log files (if the ESB Service is

configured to trace level of at least Info). To add the Trace step, scroll through the Process Steps until

you find it and drag it onto the Process Designer right underneath the Transform -Xslt step. If you select

the Trace step and look at the properties, you will notice that it’s only property is Name.

The last step to developing this process is to take action when the messages fail validation. For this

example, we are just going to throw an exception which will be returned to the sender as well as logged

in the Neuron ESB v3 event log and the Neuron log files. Throwing an exception in a Validate – Schema

step is very easy. When the message fails validation, the reason for failure is automatically saved. All

you have to do is add a Rethrow Process Step to the “Invalid” branch to have this failure logged as an

exception. Scroll through the Process Steps until you find the Rethrow step. Drag it onto the Process

Designer, into the execution block just above the Cancel step in the “Invalid” branch. Select this step;

you will notice that the only configurable properties are the Name and Disable property. Because the

Rethrow step will cause execution to stop, you can delete the Cancel step that follows it. To do this,

right-click on the Cancel step and select Remove. Your Business Process should now resemble this:

Click the Process Designer “Apply” button (highlighted in blue above). A great feature in Neuron ESB

Explorer is the ability to test processes directly from the Process Designer. To test a process, click on the

“Test Process” button (highlighted in blue below):

The Edit Test Message dialog will open. From this dialog you can enter any message you want to test

with your Business Process. You can also set message header properties and custom message

properties. For this test we only need to modify the message itself. You can either type the message

into the message pane or you can click the Load File button circled in Red below and open the test

message BookSampleData.xml included in the Projects folder:

If you want to copy/paste the XML, use this:

<book isbn="0836217462">

 <title>Being a Dog Is a Full-Time Job</title>

 <author>Charles M. Schulz</author>

 <character>

 <name>Snoopy</name>

 <friend-of>Peppermint Patty</friend-of>

 <since>1950-10-04</since>

 <qualification>extroverted beagle</qualification>

 </character>

 <character>

 <name>Peppermint Patty</name>

 <since>1966-08-22</since>

 <qualification>bold, brash and tomboyish</qualification>

 </character>

</book>

Click the OK button to begin the test. The dialog will close, and each step will be highlighted in Green as

the Process is executed. When the execution reaches the Trace step, the contents of the newly

transformed message is written to the output window:

Now that you’ve created and tested a Business Process, you’re ready to attach it to a party and test with

the Neuron ESB Test Client!

In Neuron ESB Explorer, navigate to Messaging and then Publishers. Select the BookMessagePublisher

from the list and the click the Edit Processes button:

Full documentation to the Business Process Designer and Business Process Steps can be found here:

https://www.neuronesb.com/article/kb/business-processes-overview/

https://www.neuronesb.com/article/kb/business-processes-overview/

Click the Edit Processes button to open the Processes dialog:

Select the VETO Process from the available processes list and click the arrow button that points to the

right (highlighted in blue above). The VETO process is added to the list of current processes for this

party, and because this party was selected from a list of Publishers, the On Publish event is the default

event. This instructs Neuron ESB to execute the Business Process when the BookMessagePublisher

receives a new message from an external source and right before it publishes the message to the ESB.

All parties, regardless of whether they are publishers or subscribers, can execute Processes on either the

On Publish or On Receive events, or both.

Click OK and then Apply the changes to the party. Now Save the Neuron ESB Configuration.

Open two Neuron ESB Test Clients from the Neuron ESB Explorer by clicking Tools->Test Client->2 Test

Clients. Configure one test client to use the BookMessagePublisher and the other to use the

BookSubscriber.

Click on the Send tab for the BookMessagePublisher test client and paste the XML into the Message

pane (or use the Load Body button to load the message from the Exercises folder). Click the Send

button:

You should see a received message in the BookSubscriber test client similar to below. To “pretty print”

the Xml in the test client, select Message->Format XML from the menu:

You have now successfully created and tested a Business Process in Neuron ESB!

Neuron ESB Client API
Up to this point you have configured Topics, Parties and Transports and tested this configuration using

the Neuron ESB Test Client. The final section of this training will involve peeling away the layers you

have been working with and programming directly with the Neuron ESB Client API. This section assumes

you have Visual Studio and are familiar with programming .NET applications.

The Neuron ESB Client API is an event based, distributable API that can be hosted in .NET applications to

publish and receive messages to and from Topics. Topics are the core of the Neuron ESB messaging sub

system and are hosted by the Neuron ESB runtime windows service. At the core of the Neuron ESB

Client API are the Publisher and Subscriber .NET classes, which are derived from the Party class.

Generally, users will create either an instance of Publisher or Subscriber class (or Party class) in .NET

code, Connect to the bus and either send or receive messages.

Creating an instance of either the Publisher or Subscriber requires passing in several parameters listed in

the table below:

SubscriberId Name of the Publisher or Subscriber object as defined within the Neuron
ESB Explorer

Zone The name of the Zone defined within the Neuron ESB Explorer. It can be
found by navigating to Deployment-> Settings-> Zone. By default, this
should always be “Enterprise” and never change.

ServiceAddress Sometimes called the “Bootstrap” address. This is the net.tcp address for
the Neuron ESB server and its configuration port. The default address
should be “net.tcp://localhost:50000”. The actual Port number can be
changed by navigating to the Port tab on Deployment-> Settings-> Zone
screen within Neuron ESB Explorer. This is the address that a Party will
initially establish a connection with to download its respective
configuration so that it knows how to and which Topics to Connect to.
NOTE: If Port Sharing is enabled the ServiceAddress must be appended
with the name of the Neuron ESB runtime instance. For example:
“net.tcp://localhost:50000/Default”

https://www.neuronesb.com/article/port-sharing/

ServiceIdentity This is used only under some circumstances when Kerberos or delegation
is configured and the Neuron ESB runtime windows service is set to run
under a specific domain user account. In which case the serviceIdentity
can be a UPN value i.e. upn:CORP\DomainUser.

The parameters can be passed either by embedding them within the app.config file (demonstrated in
the Practice section of this document) of your project, or by specifically declaring them using the
SubscriberConfiguration class. The example below demonstrates how to create an instance of a
Publisher object, using the SubscriberConfiguration class:

SubscriberConfiguration config = new SubscriberConfiguration("AccountPublisher", "Enterprise",
 "net.tcp://localhost:50000", "");

 using (Publisher client = new Publisher(config))
 {

 }

Although the example above created the Publisher object within a “using” statement block, its common
to create these types of objects at a more global level and then manage calling “Dispose()” on the object
when you ready to disconnect from the bus.

Once an instance of the Publisher or Subscriber class is created, you can wire in any number of events
for notification if something of interest occurs. There are several events, some of which are listed in the
table below.

OnOnline This will fire once for each Topic that the client (Publisher or Subscriber)
successfully connects to and receives an online event from the Neuron
ESB Server. The client can only send messages to Topics that have
generated an Online event. A client can be “connected” to a Topic yet
still be in an Offline state.

OnOffline This will fire once for each Topic that the client receives an Offline event
from the Neuron ESB Server. For example, if the Topic’s publishing
service is shut down or disabled on the server side, the client will

https://www.neuronesb.com/article/port-sharing/

receive an Offline notification. This will cause any message sent to that
specific Topic from the client to fail.

OnReceive This is usually used by Subscriber objects to receive messages in real
time as they are published to the bus. The OnReceive handler will pass
both the message as well as an instance of the current Subscriber
object.

OnSend Whenever a message is published, the OnSend event handler will be
invoked. This event occurs just before the message is actually sent and
therefore, should not be used as confirmation of a sent message.

OnSubscriberDisabled This will fire if the client is disabled within the Neuron ESB Explorer on
the server side.

OnConfigurationChanged By default, clients communicate with the Neuron ESB runtime windows
service every 15 seconds to determine if the current running ESB
Configuration has changed. This can be changed by navigating to the
Server Tab located on the Deployment-> Settings-> Zone screen within
Neuron ESB Explorer. For example, someone may change the Topics, or
the Topic configuration or the Processes associated with the client. If
that happens, the client will detect and download the changes and
refresh its runtime state. If the client detects such changes, this event
will fire.

OfflineNeuronWsDiscovery Occurs when online instance of runtime shuts down – WS-Discovery
broadcast message

OnlineNeuronWsDiscovery Occurs when online instance of runtime starts up...and occurs on a
regular interval defined by esbservice.exe.config – WS-Discovery
broadcast message

After an instance of either a Publisher or Subscriber class is created, it must “Connect” to the Neuron
ESB runtime windows service i.e. the “bus”. The connection process does several things, first and
foremost it establishes a secure connection with the bus and downloads the sections of the Neuron ESB
Configuration that it needs to finish connecting to Topics as well as to later run any specific Business
Processes that may be attached to it. Next, it will establish connections to specific sub systems within
the bus, like the Neuron Auditing service (if being used). Lastly, it will establish a connection to each
Topic’s publishing service hosted by the bus. The example below demonstrates connecting to the bus
while examining any errors during the connection process:

 using (Publisher publisher = new Publisher(config))
 {

 // catch any exceptions that may occurr while connecting to each individual topic
 PartyConnectExceptions exceptions = publisher.Connect();
 if (exceptions != null && exceptions.Count > 0)
 {
 foreach (var e in exceptions.GetResults())

Console.WriteLine(string.Format("An error occurred connecting '{0}' to Topic, '{1}'. {2}",
publisher.Context.PartyId, e.Exception.Message, e.Topic));

 }
 }

Each connected Topic is represented by its own individual connection and state within the client. Hence,
within the internals of the Publisher/Subscriber object the collection of Topic connections is represented

as a collection of ESBTopicContext objects. For example, the connected and online state of a specific
Topic connection could be determined using the example below before a client publishes a message to
the bus:

Neuron.Esb.Channels.ESBTopicContext topicContext =
 publisher.Context.TopicContexts[Neuron.Esb.Internal.ESBHelper.TopicRoot(“Accounts.Loan”)];

if (topicContext.IsOnline && topicContext.Connected)
 {
 }

After a client has connected to the bus, it can either send and or receive messages. There are several
“Send” methods off of the Publisher class for sending a variety of different messages types. All Send
methods publish data to a specific Topic supplied at runtime. The most common Send methods are
listed in the table below:

SendXml Used to publish XML data

SendMessage Used to publish a Neuron ESB Message. An ESB Message is a special
class that can encapsulate any data type. It has a rich set of header
properties which govern how the bus will operate and route the
message. For example, the Topic to publish the message to, as well as
the message pattern can be set as a property within the class.
Additionally the ESB Message supports the use of “custom” properties
or meta data. Custom meta data can be added at runtime and live with
the message through its duration on the bus. This data can be
accessed, audited as well as modified within a Neuron Business
Process or Workflow.

Send Used to publish any binary or .NET Serializable object.

In the example below, the client publishes both a System.DateTime object as well as XML data to the
bus. For the latter, the Semantic property has been changed from its default of Multicast (indicating
Asynchronous messaging) to Request (indicating Synchronous messaging). When changed to Request,
the Send method will block the caller until it either receives a response message from the receiving
subscriber or the request times out:

#region Send a .NET serializable object like datetime
// Send anything .net serializable like date time or custom class
publisher.Send(“Accounts.Loan”, DateTime.Now);
#endregion

#region Send a simple request message that will return a reply
// this means that the subscriber must send back a reply message
ESBMessage response = publisher.SendXml(“Accounts.Loan”,"<Test>MyRequest</Test>",

"",SendOptions.Request);
#endregion

When subscribing to messages from the bus, the OnReceive event handler must be used. Within the
event handler, messages will be received as they are published to and routed by the bus. Each time a
message is published a list of eligible subscribers is computed (in memory) either at the server level or in
some cases, within the Publisher object instance (depending on the Transport configuration of the Topic
that the message is published to). Once a message is received, its data type can be inspected and the
message can be cast into its specific datatype using the GetBody<>() method of the ESBMessage class as
in the example below:

 private static void OnReceive(object sender, MessageEventArgs e)
 {
 ESBMessage message = e.Message;

 if (message.Header.BodyType != null)
 {
 if (message.Header.BodyType.Equals("text/xml"))
 Console.WriteLine(message.GetBody<string>());

 if (message.Header.BodyType.Equals("DateTime"))
 Console.WriteLine(message.GetBody<DateTime>().ToString());

 if (message.Header.BodyType.Equals("TestSerialization"))
 Console.WriteLine(message.GetBody<TestSerialization>().Name);
 }
 else
 {
 Console.WriteLine(message.Text);
 }
 }

Lastly, if a Topic is configured with a Transaction Transport such as MSMQ, the ambient transaction can
be used within the receive handler to roll the received message all the way back to its underlying Queue
for another redelivery attempt:

 private static void OnReceive(object sender, MessageEventArgs e)
 {

 Transaction tx = System.Transactions.Transaction.Current;
 if (tx == null) Console.WriteLine(" null transaction");
 else Console.WriteLine(" transaction exists");

 tx.Rollback();

 }

Excercise - Using the Client API
Open Visual Studio and create a new Console Application called NeuronAPITraining

Right client the Project and select Properties. On the Application Tab, verify the Target Framework is set

to .NET Framework 4.7.2. When prompted to verify the change, press Yes.

Right click the Project, Add Reference and use the Browse option to navigate to the Neuron program

files folder (C:\Program Files\Neudesic\Neuron ESB v3\DEFAULT).

Highlight the following assemblies:

• Neuron.dll

• Neuron.Esb.dll

• Neuron.Esb.XmlSerializers.dll

• Neuron.Pipelines.dll

• Neuron.Scripting.dll

Click “OK” to add the references and add a using statement for Neuron.Esb to the top of the Program.cs

file.

If not already present, add an Application Configuration file to the project and add the following entries:

<appSettings>

 <add key="esbZone" value="Enterprise"/>

 <add key="esbServiceAddress" value="net.tcp://localhost:50000/"/>

 <add key="esbServiceIdentity" value=""/>

</appSettings>

Add the following code to the main method. For the OnReceive event, if you press TAB, IntelliSense

automatically completes the statement for you and displays the event handler reference as selected text

in the Code Editor. To complete the automatic event hookup, IntelliSense prompts you to press the TAB

key again, to create an empty stub for the event handler.

static void Main(string[] args)

{

using (Subscriber sub = new Subscriber("BookSubscriber"))

{

sub.OnReceive += Sub_OnReceive;

 sub.Connect();

 Console.ReadLine();

}

}

Replace the auto-generated code in the event handler with the following:

Console.WriteLine(e.Message);

Your project should now look like this:

 Before we run our project we have to add a configuration section for log4net to the App.config file. If

you do not add this section you will receive the following console screen when running the project.

Add the following section to your App.config file

<log4net>
<appender name="EventLogAppender" type="log4net.Appender.EventLogAppender">

<logName value="Application"/>
<applicationName value="ESBv3_DEFAULT"/>
<layout type="log4net.Layout.PatternLayout">

<conversionPattern value="%message%newline%exception"/>
</layout>
<filter type="log4net.Filter.LevelRangeFilter">

<levelMin value="WARN"/>
<levelMax value="FATAL"/>

</filter>
</appender>

 <root>
 <level value="INFO"/>
 <appender-ref ref="EventLogAppender"/>
 </root>
</log4net>

Hit F5 to save and build the project. A window should appear with your Console Application running.

From the Neuron ESB Explorer, open a single Test Client and connect as BookMessagePublisher.

Arrange the windows so you can see both your Console Application and the Test Client.

Click the Send Tab in the Test Client. Change the Topic using the Topic dropdown to Books. Copy and

paste the XML below into text area.

<book isbn="0836217462">

 <title>Being a Dog Is a Full-Time Job</title>

 <author>Charles M. Schulz</author>

 <character>

 <name>Snoopy</name>

 <friend-of>Peppermint Patty</friend-of>

 <since>1950-10-04</since>

 <qualification>extroverted beagle</qualification>

 </character>

 <character>

 <name>Peppermint Patty</name>

 <since>1966-08-22</since>

 <qualification>bold, brash and tomboyish</qualification>

 </character>

</book>

Finally, press Send. You should see something similar to the following:

Congratulations! You’ve just written your first application using the Neuron API.

But we’re not done. You are now going to modify the code so that depending on the Semantic

requested by the original Party you will optionally return a response if required.

Stop your Console Application and add the following code to the sub_OnReceive method:

if (e.Message.Header.Semantic == Semantic.Request)

{

 ESBMessage retVal = e.Message.CreateReplyMessage();

 retVal.FromString("Message Received!");

 Subscriber sub = o as Subscriber;

 sub.SendMessage(retVal);

}

Now hit F5. Once again, arrange the windows so you can see both the Test Client and the Console

Application.

In the Test Client Send Tab change the Semantic to Request.

Press Send. This time you should not only see the transformed message appear in your Console

Application but you should also see the response appear in your Receive tab as well.

Using a Request Semantic means the client is expecting a synchronous reply to its message. When this

Semantic is used the client will block until it receives the response or until a timeout occurs.

You do not have to use synchronous messaging. BookMessagePublisher and BookSubscriber can both

be configured to send to the Books Topic using a Multicast Semantic and both Parties will receive the

message. Synchronous messaging is useful when you are implementing a scenario where the Request

Reply Message Exchange Pattern is the norm such as in Neuron ESB Client Connectors which publish

SOAP/REST requests to the bus and receive SOAP/REST responses from Neuron ESB Service Connectors.

Review
Neuron ESB is a .NET based Application, Service and Workflow Integration Server which utilizes publish /

subscribe as its foundation to deliver the functionality of Message Oriented Middleware, a Services

Intermediary and Enterprise Application Integration.

Messages flow over Topics in Neuron ESB and are published and subscribed to by Parties. Parties can be

publishers, subscribers or both.

Topics can have their Transport changed to deliver a different Quality of Service depending on scenario.

Messaging in Neuron ESB can be synchronous or asynchronous. This is controlled by the Semantic

property contained in the header of the ESB message.

Messages can be manipulated by Business Processes or Workflow. Business Processes are attached to

Parties, Client Connectors or Adapters in publish mode. Business processes assigned to a Party that is

hosted by Neuron ESB will be hosted by an Endpoint host, as will a business process assigned to a client

connector, an adapter, or a workflow endpoint. However, a business process assigned to a party that is

hosted by a custom .NET application will be hosted by that .NET application.

Neuron ESB’s configuration is stored in a Windows file folder as a series of XML files. The Neuron ESB

Explorer is used to create and manipulate this configuration. An ESB configuration can be worked on in

“Offline” mode. Online mode is used to monitor remote running Neuron ESB solutions. Offline mode

can work with any ESB configuration, but any changes will not take effect until the Neuron ESB Windows

Service has been configured to use that configuration and the service is restarted.

The Neuron ESB Test Client is a separate executable that is accessible either directly or by using the

Neuron ESB Explorer Tools Menu. It is an excellent tool for testing baseline communication.

Quiz
1. True or false: Neuron ESB Explorer is a server application?

2. What activities require a Neuron ESB database to function?

a. Workflows

b. Auditing

c. Activity Session Monitoring

d. All of the Above

3. The term Neuron ESB uses for message pattern at the API level is

a. Direction

b. Semantic

c. CorrelationExpectation

4. True or false: Neuron ESB can only pass XML data?

5. True or false: Processes can be attached to client connectors and adapter endpoints as well as

parties?

6. In what mode do adapter endpoints need to be running in order to attach a business process?

a. Publish

b. Subscribe

7. Which of the following statements is false?

a. Neuron ESB Processes are maintained on the server and sent in a serialized form to any

Parties they are attached to.

b. Neuron ESB Processes only execute on the Server.

c. Neuron ESB Processes support nearly any processing imaginable.

d. Parties in Winform apps running Processes can have those Processes utilize resources

that will only exist on that client machine thereby enabling certain dynamic behaviors.

8. Workflows are attached to:

a. Topics

b. Parties

c. Workflow Endpoints

9. A workflow can span:

a. Less than a second

b. Hours

c. Days

d. All of the above

Appendix
The following Artifacts accompany this training:

• Neuron Fundamentals Answers.docx – This document contains the answers for the questions in

the Exercises section that do not involve creating esb files or Visual Studio projects

• Projects directory – This directory Contains the Following:

o Completed Neuron ESB Configuration NeuronFundamentals (all steps completed in this

guide)

o NeuronAPITraining Visual Studio Solution

o Pub-Sub API Visual Studio Solution – a more complete example of using the Client API

