neuronxy

Neuron ESB 3.5 introduces Long Running
Workflow capabilities!

Neuron ESB 3.5 introduces several new features and enhancements, most significant of which is long
running, fault tolerant Workflow. Neuron ESB 3.5 now ships with Workflow capabilities that allow
companies to design fault tolerant, business resilient workflows to automate critical processes that may
span hours, days, weeks or months and cross inter- or intra-company domains. Neuron ESB’s Workflow
offering is built upon Microsoft .NET Workflow Foundation 4.5, overlaying it with tools, infrastructure, a
hosting environment and services necessary to deliver enterprise-level performance and scalability on
the Microsoft .NET platform.

Previous versions of Neuron ESB offered business process capabilities through a graphical, user-friendly
Business Process designer and runtime environment. The Business Process engine targeted real-time
requirements where performance, agility and time to market were driving factors. This was often used
in low latency environments such as request/response type of messaging to provide either simple VETO
or, more complex Scatter—Gather and Service Composition/Orchestration Patterns. Service Composition
and Orchestration is commonly used to expose a discrete set of services within an organization as higher
level business services.

For example, a Business Process used to execute purchase orders may “orchestrate” the execution of
several existing services in the organization and/or cloud to retrieve the information needed or update
necessary systems. The results of which may need to be evaluated, enriched and/or aggregated and
returned as the final response. Some of these activities may be executed asynchronously or even in
parallel. Collectively, these activities and services represent a higher level Order Processing Service,
where innovation is created by “composing” existing services into new business capabilities.

http://www.neuronesb.com/

P

neuronxy

-
Service Composition
=
Purchase
Order
Parallel
Update
Update Order Get Supplier Warehouse Book
Mot Infia Motifications Furchase
=N =N B, B,
Transform Transform Transform Transform
@ @ ((
Call Order Get ‘Warehouse Update
Service Supplier ID Ticket Financials
K
fggregate
Responses
Financ_-é
Rules
_
Return
Response
\ y

Figure 1 Neuron ESB Service Composition/Orchestration — Example of a Service Composition Business Process within the Neuron
ESB Explorer

In addition to Service Composition/Orchestration, many organizations use the Neuron ESB Business
Process engine to build fairly complex business processing scenarios. However, where the Business
Process engine excelled in the areas of performance, functionality and ease of use, it lacked certain
features such as real time activity tracking, fault tolerance, correlation of long running messages as well
as “out of the box” compensation (commonly referred to as “saga” or “long running transactions”).

Neuron ESB 3.5 Workflow adds all these features and more, allowing businesses to automate and
manage processes that span cloud, partner, system and organizational boundaries. When critical failures
occur in the process or the underlying hardware, workflows can resume where they left off in the
Neuron ESB hosting environment. Neuron ESB 3.5 provides a clustered hosting environment (called
“Availability Groups”), that load balances the execution of workflows across multiple servers in
dedicated/isolated host processes. This same clustered hosting environment allows failed workflows to

http://www.neuronesb.com/

neuron X3¢

automatically rollover onto available servers and start where they left off, providing both resiliency and
reliability for mission critical functions.

¢ Neuron ESB Explorer = |EI il

Fle View Tools Help

‘[% | ® stopped - & E | Configure Server | Category Fl‘terl vl |

You are working offine. E:\WebCast\Solutions\DemoSolution

Deployment : Availability Groups

El & Settings 217 New €3 Delete
@Zunes -
[® Environments Name Category Description

{S Availability Groups

.'__5- Environment Variables

[Fl *= Manage
£ patabases :@ Apply @ cancel
[MsMQ |- L <
(7 RabbitiQ Availability Group Dependencies Deployment Setting:
-
@ Messaging Deployment Groups
= Development |
g FERTET Server Name Role Refry Count Refry Interval
o~ M localhost Primary 0 0
Connecti
%d annectens = Production
@ Security Server Name Role Refry Count Retry Interval
F workflowServer1 Primary
{;5‘ Processes F WorkflowServer2 Primary
— » IE Falover |5
=] Deployment a QA |
Actiity Server Name Role Retry Count Retry Interval LI

Modified .:

Figure 2 Neuron ESB Availability Groups — Availability Groups provide isolated high availability clustered hosting for Neuron ESB
Workflows. Servers can be defined for load balancing Workflow execution as well as dedicated failover.

In addition to the new long running, fault tolerant Workflow capabilities, Neuron ESB 3.5 provides a

number of new features and enhancements that make using, managing and interacting with Service and
Adapter endpoints easier and faster. Some of these include:

e Composition using Adapter and Service Endpoints

e WS-Discovery enabled runtime, parties and endpoints

e REST and WMI enabled Endpoint Health Monitoring

e NetSuite and Dynamics CRM 2013 Online

o Neuron ESB Explorer User Experience (UX) improvements

All the changes included in the 3.5 release can be found in the Neuron ESB Change Log which gets
installed with Neuron ESB. Users can download the latest Neuron ESB release from the Neuron ESB web
site download page.

Neuron ESB Workflow Environment
Neuron ESB 3.5 Workflow brings long-running transactions and complex business processes to the
enterprise service bus. Using workflow, it is possible to build business processes that can span days,

http://www.neuronesb.com/
http://support.neuronesb.com/downloads/NeuronChangeLog.pdf
http://www.neuronesb.com/product/download/
http://www.neuronesb.com/product/download/

neuronXResb

weeks, or even months coordinating business activities, responding to business inputs, and integrating
business systems. Neuron ESB 3.5 provides a complete Workflow hosting environment for running

workflows as part of, or independent of, your ESB messaging solution.

Figure 3 Neuron ESB Workflow — Green boxes are Neuron ESB provided Infrastructure, tools and runtime services

Features
Figure 3 illustrates the features of Neuron ESB 3.5 Workflow. The blue highlighted elements are the core

features of the Microsoft .NET Workflow Foundation (WF) that come as part of the .NET Framework.

http://www.neuronesb.com/

neuronxy

The green highlighted elements are the additional features that Neuron ESB provides on top of WF for
use in enterprise environments.

Neuron ESB’s 3.5 Workflow is built on WF that was originally introduced in .NET 4.0 and improved upon
in .NET 4.5. Although Neuron ESB uses WF to manage workflow execution and persistence, significant
work was undertaken to make WF manageable, fault tolerant and truly enterprise-ready, including the
development of the following:

o Workflow Designer

o Workflow Types

o Workflow Execution Environment
e ESB Message Integration

e Workflow Tracking and Playback
e Workflow Control and Monitoring
e Workflow Samples

Workflow Designer

Neuron ESB hosts its own Workflow Designer within the Neuron ESB Explorer. The Workflow Designer
hosted in the Neuron ESB Explorer is the same designer that developers use inside of Microsoft Visual
Studio to design and build workflows for .NET applications. With Neuron ESB, developers do not need to
leave the Neuron ESB Explorer environment or have Visual Studio installed in order to build and edit
workflows. Neuron ESB maintains compatibility with Visual Studio workflows allowing workflows to be
imported and exported between both environments.

%2 Neuron ESB Explorer —[ofx|
Fie View Tools Help
= | &~ | ® Stopped - o/ I | Configure Server | Category Fiter -
You are working offine. E:\WebCast\|Solutions\DemoSolution
Order Process X - X
Processes
> ") O B P e g Bt e][] A category: General ")
Order Process Expand All Collapse Al Toolbox | outine
> | o
e Clone Message |
3 Create mnary Message.
Start Create Reply Message
(¥} CorpValidation Create Text Message.
{4 Drect Service Endpoint e +
4 P — 31 Publish Message o
y Publish Request Message
Decision >
53 Send bt Emad 9] Recene Message
o o .y o - =] Web Services.
{RY Prblich Ovder | Adapter Endpoint
{ o 44 Comelationscope
¥ = [-
4 sidator | | » K| b
Al »
Name Direction Argument type Default value Neuron.Esb.Activities.Publishi
[9 Messaging message n ESBMessage Enter a VB expression =
P .
configuration n ESBConfiguration Enter a VB expression =
g Repository & Misc
environmentVariables n IReadOnlyDictionary<Sti £nter 2 VB expression [~ Correlationset Edit _I
T | s o
DispiayName Publish Order
. Variables Imports W A 9217% (=] Message . _I
@ o i =
W | e | roperty [Message Semantic Multicast ¥
Tope poont %
g Deployment
& rom _eren [oum |

Modified .::

Figure 4 Neuron ESB Workflow Designer — Located within the Neuron ESB Explorer. The toolbox to the right of the designer
contains all the out-of-the-box workflow Activities including Neuron specific activities. Over70 activities are included.

http://www.neuronesb.com/

neuronxy

Using the Neuron ESB Workflow Designer, users can create new Workflows or import existing
Workflows previously created in Visual Studio by selecting either “Create Workflow” or “Import

Workflow” from the Processes toolbar.

Neuron ESB Explorer
Fle View Tools Help
= | “&- | @ Stopped - o B8 | Configure Server
You are working offline. E:\WebCast\Solutions\DemoS:

(VIR 4

rder Process

Create Process
Create Workflow...
Import Workflow...
In_Account_SoapHeader
in_Account_To_Canonicg
out_Canonical_To_Servic
CorpValidation

Direct Service Endpoint

Direct To
EmailProcessor

Figure 5 Neuron ESB Processes Menu — Users can create or import existing workflows using the Menu items located on the
“New” toolbar button.

Workflow Activity Toolbox
The Workflow Activity Toolbox is located to the right of the Workflow Designer and contains 79

Workflow Activities. Although many are the standard Workflow Activities that ship as part of WF, others
are Neuron ESB specific that enable interaction with Neuron ESB Messaging, Adapters and Service
Endpoints or provide some additional level of interaction with the Neuron ESB Messaging system.

Neuron ESB also supports WF custom developed activities as well as external assembly references which
can be added through the Neuron ESB Workflow Designer toolbar.

¢ Neuron ESB Explorer
Fle View Tools Help
|-l | %%~ | @ Stopped - 'o| I | Configure Server | Category Fiter =]

You are working offline. E:\WebCast\Solutions\DemoSolution

VewWorkflow1 %

G é& b - Lgm" # __- [a ﬂ Category: General

NewWorkflow1 |Add Assembly reference |

Processes

9
Flowchart
5%

-

Start

| Generic Handlers
“h Mumamic Validates

Figure 6 Neuron ESB Add Assembly — Users can add references to external .NET assemblies through the “Add Assembly
reference” toolbar button

http://www.neuronesb.com/

neuronxy

Custom activities can be added to the Toolbox by copying activity assemblies and dependent assemblies

to the Workflows folder under the Neuron ESB instance installation folder and restarting Neuron
Explorer (ex: C:\Program Files\Neudesic\Neuron ESB v3\DEFAULT\Workflows). When custom activities
are added, they will show up in the Toolbox where they can then be dragged onto the surface of the

Workflow Designer. The out-of-the-box Neuron ESB specific Workflow Activities are listed in the table

below.

7,

Comment Out

The Comment Out activity is useful when you need to disable the execution of one
or more activities, but do not want to delete the activities from the workflow. The
Comment Out activity is a container activity that can hold a single activity or
multiple activities contained in a Sequence activity. At execution time, the
Comment Out activity will prevent the activities that it contains from executing.

The C# activity executes a C# code fragment. The code fragment is compiled at
runtime into a dynamic assembly. The C# code activity can reference classes in the
.NET Framework or reference third-party libraries. The C# code activity can also
interact with any variables of the workflow that are accessible to the activity. This is
identical to the C# Process Step and supports full IntelliSense, and opens into a
Visual Studio style editor.

C#
C# Class

The C# Class activity gives the developer more freedom than the C# activity and
allows the developer to define a custom class that will be executed. The C# Class
activity has the ability to get or set the values of variables in the activity’s scope.
The main advantage of the C# Class activity over the C# activity is that the
developer can define methods and make larger code fragments more readable
than the C# activity. This is identical to the C# Class Process Step and supports full
IntelliSense, and opens into a Visual Studio style editor.

-JS
JavaScript

The JavaScript activity allows the user to execute dynamic code written in
JavaScript. The JavaScript activity uses the Google v8 JavaScript engine to execute
workflow-specific custom logic. This is identical to the JavaScript Process Step and
opens into a Visual Studio style editor.

B
Visual Basic .NET

The Visual Basic .NET activity executes a Visual Basic .NET code fragment. The code
fragment is compiled at runtime into a dynamic assembly. The Visual Basic .NET
code activity can reference classes in the .NET Framework or reference third-party
libraries. The Visual Basic .NET code activity can also interact with any variables of
the workflow that are accessible to the activity. This is identical to the Visual Basic
.NET Process Step and supports full IntelliSense, and opens into a Visual Studio
style editor.

Execute Process

The Execute Process activity allows developers to reuse existing message
processing that has been built using Neuron ESB’s Business Process designer. With
the Execute Process activity, a workflow developer can choose an existing Business
Process to execute and can send a message into the process and capture the
message output by the process.

[l
e (
Deserialize Data
Contract

The Deserialize Data Contract activity will accept an XML message and will use the
.NET DataContractSerializer class to deserialize the XML into an object. The
Deserialize Data Contract activity is a generic workflow activity and the workflow
developer will be prompted at design time to choose the class type for the
deserialized object.

http://www.neuronesb.com/

P

3

neuron

-
e

Serialize Data
Contract

The Serialize Data Contract activity will take a DataContract object and will serialize
the object to XML using the .NET DataContractSerializer class.

Clone Message

The Clone Message activity will accept an ESBMessage object and will create an
identical copy of the ESBMessage. This activity can be useful when publishing the
message to other topics or when it is necessary to change the body or headers of
the message during workflow processing.

Create Binary

Create Binary Message will create an ESBMessage object containing a binary body.
The Create Binary Message activity accepts the body as an array of bytes and will
output an ESBMessage object.

Message
The Create Reply Message activity will accept an ESBMessage object and will
[generate another ESBMessage that can be used to return a reply for the original
Create Reply message. The Create Reply Message activity is useful when building Request/Reply
Message workflows

Create Text Message

The Create Text Message activity will create an ESBMessage object containing a
text body. The Create Text Message activity accepts a body as a string and will
output an ESBMessage object.

Publish Message

The Publish Message activity will let a workflow publish a message to a Neuron ESB
topic. The Publish Message activity can specify correlation settings that the
workflow runtime will use to find and route reply messages back to the workflow. If
a Correlation Set is used, the Semantic property must be set to Multicast. When
testing at design time the solution must be loaded into the local Neuron ESB
Runtime. The runtime must be started. Lastly, a valid Source ID and Topic must be
entered into the Edit Message Dialog when initiating the test.

§

Receive Message

The Receive Message activity is used in correlated workflows to receive messages
that have been routed to the workflow based on configured correlation settings.
When running correlated workflows, messages will be queued in the Neuron ESB
database for the workflow instance. The Receive Message activity will retrieve the
next message from the queue and will return the message to the workflow for
processing.

w

The HTTP GET activity will execute an HTTP GET request against an HTTP service
such as a web service or website. The HTTP GET activity will return the body of the
data that was received from the remote web service.

HTTP GET
6' % The HTTP POST activity will execute an HTTP POST request against a web service or
website. The HTTP POST activity will allow the workflow to specify the body of the
HTTP POST request to be sent to the remote web service.
/ The Write to Event Log activity allows the workflow to report a message to the
v Windows Event Log.
Write to Event Log
— The Invoke PowerShell activities are used to execute PowerShell scripts inside of a
$_

Invoke PowerShell

workflow. There are two PowerShell activities. The second activity is capable of
returning a result from the PowerShell script to the workflow. Each requires the
installation of PowerShell 3.0 or greater.

Is Match?

The Is Match activity evaluates a string value using a regular expression to
determine whether the string is a match. The Is Match activity will return a Boolean
result.

http://www.neuronesb.com/

P

neuron

3

e

The Matches activity will execute a regular expression against a string value and

ABC will return the string fragments that match the specified regular expression.
Matches
% The Replace activity will execute a regular expression against a string value and will
= replace the matched text with an alternative string or value.
Replace

Database Query

The Database Query activity will execute a query against a SQL database and will
return the result of the query.

|-
|

-
N

Query DataSet

The Query DataSet activity will execute a query against a SQL database and will
return the results of the query in a .NET DataSet object for processing.

Query Scalar

The Query Scalar activity will execute a query against a SQL database and will
return the single result of the query.

-

The Database Update activity will execute a SQL update command against the
database. The Database Update command will typically be used to perform INSERT,

Database Update UPDATE, or DELETE SQL statements.
~ The Get Workflow Instance ID activity is useful when the workflow needs to know
/gy the identifier for the executing workflow. Each instance of a workflow has a unique
UUID value that is generated automatically when the workflow instance is created.
Get Workflow

Instance ID

The Get Workflow Instance ID activity will return the identifier for the current
executing workflow. This activity can be useful for logging or other diagnostic uses.

@"’}; The Deserialize From JSON activity will accept a JSON string and will deserialize the
. JSON into an object. Deserialize From JSON uses the JSON.NET library to deserialize
Deserialize From o .
the JSON object into a .NET object.
JSON
»‘ The Serialize To JSON activity will take a .NET object and will generate the JSON
o representation of the object. The Serialize To JSON activity uses the JSON.NET
Serialize To JSON library to serialize the object to JSON.
The Publish Request Message activity will publish a message as a request to a
Neuron ESB topic and will wait for the reply to be returned. While waiting for a
reply, the workflow may become idle and unload to allow another workflow to
L4 execute. When the reply is received, the workflow will be reloaded from the
Publish Request database and will continue execution. When testing at design time the solution
Message must be loaded into the local Neuron ESB Runtime. The runtime must be started.

Lastly, a valid Source ID and Topic must be entered into the Edit Message Dialog
when initiating the test.

The Adapter Endpoint activity allows a workflow to call a configured Neuron ESB
adapter endpoint directly without the need of publishing a message to an ESB
topic. The Adapter Endpoint activity will allow the workflow to send a message to

Adapter Endpoint : !)
or receive a message from a configured Neuron ESB adapter endpoint.
The Service Connector activity allows a workflow to send a message to a configured
Neuron ESB service connector directly without the need of publishing a message to
o an ESB. The Service Connector activity is useful when interacting with web services

Service Connector

where a service connector is already configured. When testing at design time the
solution must be loaded into the local Neuron ESB Runtime. The runtime must be
started. Lastly, a valid Source ID and Topic must be entered into the Edit Message
Dialog when initiating the test.

http://www.neuronesb.com/

P

neuronxy

The Audit Message activity functions identically to the Audit Message Process Step.

Allows messages to be selectively audited into the Neuron ESB message history or
] ' failed message reports. When testing at design time the solution must be loaded
into the local Neuron ESB Runtime. The runtime must be started. Lastly, a valid
Source ID and Topic must be entered into the Edit Message Dialog when initiating
the test.

Audit Message

The Split Xml Message activity allows users to split incoming batch files into their
]j-[individual records, storing those records into a List<ESBMessage> collection that
can be operated on. Users can configure the Split Xml Message with an XPATH

Split Xml Message statement to determine the boundary of individual records within the batch file.

Y The Join Xml Messages activity compliments the Split Xml Message. It takes the
G :a collection of messages (i.e. List<ESBMessage>) and outputs them as a single
aggregated message. Users can define the root node as well as namespace for the
outgoing batch file.
The Validate Xml Activity can be used to validate an Xml message against a
‘ set of Xml schemas. This activity is identical in both functionality and

F'_| property configuration to the Validate — Schemas Process Step. If validation
Validate Xml is not successful, an exception is thrown indicating the reason why
validation failed.
The Transform Xml Activity can be used to apply an Xslt/Xsl transform to an
XML message. Additionally parameterized Xslt/Xsl is supported. Parameters

e can be useful when the same value must be repeated many times within

= 4 the document. This activity is identical in both functionality and property
Transform Xml configuration to the Transform - Xslt Process Step. If the transform is not
successful, an exception is thrown indicating the reason why
transformation failed.

Join Xml Messages

Workflow Simulation

Neuron ESB’s Workflow Designer supports similar testing/simulation features as the Neuron ESB Process
Designer. Using the Neuron ESB Workflow Designer, users have the ability to simulate workflow
execution for testing at development time. Neuron ESB Explorer’s test runner allows developers to pass
messages to the workflow and to monitor the workflow’s execution in real-time. Several of the
workflow activities also support the simulated runtime environment. For example, the Receive Message
activity will allow developers to test receiving messages during a workflow’s execution. There are other
Workflow Activities that support a combination of design time and run time testing. Specifically, the
Publish Message, Publish Request Message, Audit Message, Adapter Endpoint and Service Endpoint
Workflow Activities can all be tested at design time while interacting directly with the local Neuron ESB
runtime solution. To test these, the local Neuron ESB runtime service needs to be loaded and started
with the current solution and a valid Source ID and Topic must be provided in the Edit Test Message
dialog.

Simulation/Testing is started by pressing the Test Workflow button on the Workflow Designer’s toolbar
as shown in Figure 6. This will prompt the user for a message via the Edit Test Message dialog (the same
dialog used in the Business Process Designer). When the user presses the OK button, the simulation will
begin. Each step that executes will be highlighted in Yellow, with any outputs (WriteLine workflow
activity or anything that writes to System Console) being written to the Output window located at the

http://www.neuronesb.com/

neuronxy

bottom of the Workflow Designer. Any errors that occur will be written to the Errors window located at

the bottom of the Workflow Designer.

& Neuron ESB Explorer -0 il
Fle View Tools Help
i1l | %~ | ® Stopped ~ o B | Configure Server | Category Fiter -~ |
You are working offine. Ex\WebCast\Solutions\DemoSolution
| VewWorkflowd X - X
Processes
i E & Export | Uy) General -
EETD RPN EEE)
4 AudiProcess 2| Newworkfiowt [Test Workflow Expand Al Collapse A | Toolbox | Outline
5 Callection Integration =
+48} In_Account_Audit) oeEt Bl
A persist ;I
TerminateWorkflow
out_Canonical_To,
CorpValidation 77 NoPersistScope
Direct Service Endpoin' Start <
Direct To [l Primitives
EmaiProcessor R Assign
EmitEnvVars A B
o EPlusvalidator T Delay
&
-/ Generic Handlers
i WriteLi i
45} Dynamic_validate_ A viitetne [E3) wrte to Event Log
i} Exception_Handler m InvokeDelegate
Exception_Handler { Text message.Text Text | "o body™
etThumbprint hod &y InvokeMethod
GTvalidator Has ly — —
HomeProcess 7| writcime
\E—'\ InboundFailuresSpiitta B T -
4o jsonConverter f":_‘ ion §
¢! Main - Sub Process L@ CancellationScope LI
4o MainProcess H
<5 MyFolder > =
4 Order Processt Mame Direction Argument type . System. Activities. Statements. WriteLine
4%} O i
e ParallTest 4'L| message In ESBMessage Entar a VB expression =8| | [Clear
d I I L In ESBConfiguration Enter a VB expression EEl Misc
. ‘WriteLine
Messaging emvironmentVariables n IReadOnlyDictionary<Skring £nter a VB expression DisplayName
Create Argument Text message.Te ...

Variables el Imports.
Connactions

§ X o [0L

Enler a VB ¢ _I

TextWriter

9
y Repository
%’d

¥

Security

Processes

Deployment

=

o

& o]

Figure 7 Neuron ESB Workflow Simulation — Workflow Simulation by pressing “Test Workflow” button on toolbar. Each shape
executed becomes highlighted in Yellow at time it’s executed. Outputs are written to the Output window.

Workflow Types

When users select the “Create Workflow...” option from the Neuron ESB Processes menu, they are

presented with a prompt that allows them to choose from 3 basic types of Workflows i.e. Normal,

Request/Reply or Correlated Workflow shown in figure 7.

¢ ¢ Create a Workflow

Please select the type of workflow that you want to create:

X

& o
" Request-Reply Workflow

C Comelated Workflow

In a normal workflow, each message is executed by a separate workflow instance. The
workflow will be created with a single argument named "message" that will contain the data for
the message that was received by the workflow host.

Cancel

Create Workflow |

Figure 8 Neuron ESB Workflow Types — Users are prompted to select between Normal, Request-Reply or Correlated Workflow to

create.

http://www.neuronesb.com/

P

neuronxy

Normal Workflows are used primarily where a response is not expected to be returned from the
Workflow. Request — Reply Workflows are what they infer, where a Request message starts a Workflow
and that Workflow instance sends back a response to the client/system that initiated the original
Request. Correlated Workflows are a special type that defines a unique set of messages to be processed
by a single instance of a Workflow.

Normal Workflow

Normal Workflow types are most commonly used to create Workflows that subscribe to messages and
execute an instance of a Workflow for each message received. When a user selects to create a Normal
Workflow, a Workflow definition is created within the Workflow Designer. Once the Workflow is
completed, it’s must be saved and associated with a Workflow Endpoint. A Workflow Endpoint is used
to associate the Workflow definition with a Neuron ESB Subscriber, Topic and Availability Group.
Workflows essentially “subscribe” to messages published to the bus.

When a Normal Workflow is created within the Workflow Designer, the Neuron.Esb namespace as well
as 3 arguments specific to Neuron ESB Messaging are added to the Workflow definition, allowing any
activity within the Workflow to interact directly with Neuron ESB Messaging or Configuration.

G meuron EsB Explorer =lolx
Fie Vew Took Hep
|| % | ® Stopped - o B Configure Server | Category Fiter -
You are workig offine, E:\WebCast\Solutions\DemoSolution
" Newworkflows %
0| a[B] @ ld Seo| ()0 A comer corr c
73 ewwiorkdiow1 [Test Workfiow EpandMl Colspse Al Toolbox ‘ Outine

3. Fowdhart -
- =

- (O Temesontion
7 MoPersistScope
Dy

Start = primitives

e Pasion
Ty Delay

I-;"] Virtetne i P virreune BN virme 1o Event Log

To ome

Figure 9 Neuron ESB Arguments Window — Encircled in red, the Arguments window contains the message, configuration and
environmentVariables arguments.

As shown in Figure 9, these arguments can be used directly within any activity, including all the Neuron
ESB Code Activities such as the C#, C# Class, JavaScript and Visual Basic.NET Activities.

The message argument represents the original Neuron ESB Message that the Workflow will be initiated
by at runtime. All of its content and properties are accessible both during design time testing as well as
runtime as shown in Figure 10.

http://www.neuronesb.com/

P

neuronxy

¥y Neuron ESB Explorer (=] 3]

File View Tools Help

= ‘%~ @ Running - .o B8 | Configure Server | Category Fiter -

You are working offiine. E:\WebCast\Solutions\DemoSolution

NewWorkflowl - C# Code Activity X * NewWorkflows X~ Newworkflow1 X - X
Procesten Activity ewWorkflos enWiorkflow!

File Edit View
& 086

@ kOO =2

©! ParallelTest -
MyRestRequestProces

-4 1 var topic = message.Header.to
{5 Neworkflow1 P & d Z‘

{5 Newworkfion2 2 " Sequence -

4 OneWayworkfiow 3 7 Serializer
v PaymentService ;
layaValidation (3 Service
AaValidator %' Session
T 51 Samples _’lll R sID
KN — 7 Sourceld
[_x? Messaging 7 SubmissionCount s
J—‘I 1 TargetId J L

Q Repository } o To

; j‘v ‘ string ESBMessageHeader.Topic
W Connections

Line | Column | Description
4 31 ; expected

@ Security
w Processes
g Deployment
& oo .

Modified .:

Figure 10 Neuron ESB message Argument — The Neuron ESB Message (message) Argument accessed within a C# Code Workflow
Activity. This same argument can be used within any Workflow Activity.

The environmentVariables argument can be used to retrieve values specific to the runtime environment
that the Workflow instance is running in (i.e. Production, Staging, QA, etc.). Neuron ESB Environment
Variables are defined and managed within the Neuron ESB Explorer and located under Deployment-
>Environments->Environment Variables section and can be used to configure any Business Process step,
Database connection, Adapter and Service Endpoints. Many developers will create application specific
Environment Variables, retrieve them at runtime and use their values to drive the business logic within
their custom Business Processes or Workflows.

Lastly, the configuration argument provides access to the entire Neuron ESB solution configuration.
Almost all elements of a Neuron ESB solution can be accessed through this object. This can be useful to
retrieve XSLT or XML documents, encryption keys, certificates and any other entity contained within the
Neuron ESB Solution.

Request-Reply Workflow
Request-Reply workflows are easy to build using the Neuron ESB Workflow Designer by selecting
Request-Response Workflow in the prompt displayed in figure 11.

http://www.neuronesb.com/

neuronxy

#% Create a Workflow x|

Please select the type of workflow that you want to create:

" Normal Workflow In a request-reply workflow, each message is executed by a separate workflow instance. The
workflow will be created with two arguments. The first argument named "request” will contain
the message that was received by the workflow host. The second argument named "reply” is
output by the workflow instance and the message that is stored in that argument will be
published back to the topic as a reply to the original request message.

 RequestF

 Correlated Workflow

Create Workflow | Cancel

Figure 11 Neuron ESB Workflow Types — Users are prompted to select between Normal, Request-Reply or Correlated Workflow
to create. Request-Reply is displayed

By following the pre-defined pattern of accepting a request as an input argument and outputting a
message when the workflow terminates, the Neuron ESB workflow engine will automatically return the
output message as a reply to the Neuron ESB Party that originally sent the request message. This could
be a remotely hosted Neuron ESB Party, an Adapter or even a Neuron ESB Client Connector. The Neuron
ESB workflow engine was designed to fit into the messaging patterns employed by Neuron ESB users.

Request-Reply Workflow arguments differ slightly from Normal Workflows. The inbound Neuron ESB
Message argument is named request (named message in Normal Workflows), while the outbound
Neuron ESB Message argument is named reply. Use the Create Reply Message activity to set the reply
argument and additional code to set its properties. The reply argument contains the final Neuron ESB
Message that is returned to the original calling Neuron ESB Party as shown in figure 12.

_iaix
Fle Wew Teos Hep
J| - | ® Running - o B Configure Server Category Fiter -
You ars reconnected in Onine Made to : DemoSolution
RequestieplyWorkllow % -x
S [-006 O &P @b S| h [0 A oo e M)
<1 poncomerter 2] | remesmepworifon Bt 4 Colupie sl Tookex || Guting
! Mo - S Process
§i Morfroczss . -l
-4 MyFolder | = &
= Order process1 -
<% OutbourdSmiFie! H Q) comment 0t
o ParaelTest 7 Dot
A]
New Process 2 o Fer
1§ Memarkdont For Exch
18 reliaiisctlan i d
<! Paymeniserice a1
5 Requestfephyiiorkfor | Create Reply Message i
i samles T L
- Ack i Do Sangl
aratel o €ach
<4 Configuranon Runt B Prsta
. Detect Cupicate oy
=I5 Sample A Set e Reply Tent e
5 LBug Sampe g Pomma
&l new set of sample: H reply Text = i mam, [m home™
Fp——" [sewere
9} Sample vETO Swiche>
Service Steps 4
¥} UnZip Fles. H _ 2] Whie
o zore P wreene tl I
‘Send Fie s SMTP Attz H
+! SendBodiRestRespans Text | iy Text System.Actvities Statements. Flowchart
5 Set dynaric URL
< vBsien 0B sewa Gexe
o wheeitees —| |
_I; — Orechon i Ocfk valut @ mMisc |
0 »
request n ESEMessage Eate DisplayNarme Flowchart
(P esmono - o — . . Vabdateunconnectedn... [
confguranon n esecomfiguranon
g Reposkary ” *
envigementvaraties n ey Dictionary<Sting
g Comecons
J secuty Variables [arae] Imports o [
B e o, T home - |
g Deploymant . LH
& o fros ouput

Figure 12 Neuron ESB Arguments Window — Encircled in red, the Arguments window contains the request, reply, configuration
and environmentVariables arguments.

http://www.neuronesb.com/

neuronxy

Correlated Workflows
The last type of Workflow that can be created is a Correlated Workflow as shown in figure 13.

#} Create a Workflow x|

Please select the type of workflow that you want to create:

" Mormal Workflow In a correlated workflow, messages that are received by the workflow host will be filtered and
grouped based on conditions of each message that is received by the workflow host. One
instance of the workflow will be executed per group of messages that are received. The
workflow can use the ReceiveMessage activity to receive the next message that is queued to be
processed by the workflow.

€ Request-Reply Workflow

Create Workflow Cancel

Figure 13 Neuron ESB Workflow Types — Users are prompted to select between Normal, Request-Reply or Correlated Workflow
to create. Correlated Workflow is displayed

Correlated Workflows are a special type of Workflow that employs Custom Correlation at the workflow
endpoint level. Custom Correlation is user-defined criteria that controls what set of messages a single
instance of a Workflow will process. This set of messages will be routed to a specific instance of a
Workflow (i.e. Singleton pattern), whether that Workflow is running or currently dehydrated in the
database. Custom Correlation determines the “uniqueness” of a set of messages. Although many
instances of a Workflow may still execute, each instance could be processing a set of messages received
from the bus, rather than just one, as in the case of Normal Workflows. The first message that launches
the instance of the workflow is used to initialize the values of the Correlation Set.

For example, if all messages from a single publisher needed to be processed by the same workflow, a
user can choose to correlate messages based off of the session identifier and source identifier. This will
result in all messages sent from the same party on the same connection to be processed by the same
workflow instance.

Another example would be where a large file was previously split into individual records and published
to the bus. A Workflow could be used to aggregate all of the related messages (the individual records)
into a new outgoing file. In this case, any combination of message content, custom header, SOAP or
HTTP header or even regex and XPATH expressions against the body of the message could be used to
define the correlation set for a Workflow instance.

A Receive Message Workflow Activity is used within a Correlated Workflow to receive all messages that
match the Correlation Set definition on the Workflow Endpoint. Usually this is placed within a While or
similar loop within the Correlated Workflow. Hence the Receive Message Workflow Activity “follows”
the Correlation Set that was initialized when the Workflow Instance was first started (Figure 14).

http://www.neuronesb.com/

neuron

.

3

& Neuron ESB Explorer

Fle View Tools Help

i [| % | @ Stopped ~ o/ H8 | Configure Server | Category Fitter -

You are working offline. E:\Neuron\ Training\Neuron 3.5\Accumulator Workflow

Processes

ComputeSum X

=lof x|

-8

73 Computesum

Messaging

Reposttory

Connections

Security

Deployment

Activity

‘@ B P @ gk Seen e) O] 2 | coegory: General

B
ComputeSum Expand Al Collapse All
5] process tems from batch =
i.j While A
Condition
sum < 100
Body
@ Receive lineitem A
& Receive Message
A Add value to existng sum
sum = sum + Convert. Tolnt32(r¢ _I
Variables Arguments Imports ¥ A o HE O G
d | Type | Property | Message
Errors. Output

Toolbox | Outine.
Search

[Control Flow
() comment out

r a Dowhile
O For

(94
ﬂ For Each

“.‘ i3

4k Paralel

a{.' Parallel For Each
PL

;) PickBranch

[sewence

= cwitch

T4 e

System. Activities. ActivityBuilder

21 Misc

ImplementationVersion

Name

ComputeSum

Figure 14 Neuron ESB Sample Correlated Workflow— Encircled in RED is the “Receive Message” Activity. In the sample it is

located within a while loop to continually receive messages that match the values of the Correlation Set initialized by the first
message that started the Workflow instance. The Receive Message activity will continue to read messages from the internal
Workflow queue while the sum is less than 100. Once that value is hit, the current instance will complete and a new instance will

be created if there are messages pending in the queue to be processed.

When a user creates a Correlated Workflow and assigns it to a Workflow Endpoint, the Correlation Set

tab of the Workflow Endpoint is enabled. This allows the user to define the necessary properties that

control what messages are processed together by a single instance of a Workflow as shown in the figure

below.

http://www.neuronesb.com/

neuronxy

%2 Neuron ESB Explorer o =153
Fie View Took Hep
[| %~ | @ Running - o B8 | Configure Server | Category Fiter v
You are working offine. E:\Neuron\Training\Neuron 3.5\Accumulator Workflow
Vot Enor
B e Tasks | New €3 Delete
3 Import a Service =
[l ® Connection Methods & Apply) Cancel
) -]
157 Adapter Registration
i General Correlation Set Settings
£y Service Bindings
3 Service Behaviors -
=] Custom Properties
B * Endpoints
- E] Custom Properties 1item
< Service Endpoints
o B [0]
3 Adapter Endpoints
74 Workfiow Endpaints ropertyjtane I [+]
= s Policies # Header Properties :gl;:‘om>.<pmpeny> B
&3 Service Polices El HTTP BodyType [
5 Adapter Poiides HTTP Headers EDﬁtId
Query Parameters Expires
ParentMessageld
] Message Body -
= Priority
Regular Expressions RequestHeadersToPreserve
XPath Expressions x:z}grﬁnﬁgﬂd
] SOAP ReplyToSessionld
SOAP Headers gc".‘l':"'gs"p
Semantic
Sequence
@ e Session
S e Sourceld
Topic
g Reposttory Transactionld
soap_headers.<header> =l
- ecions
P o
Qé’ Processes
Property Name
g Deployment. The name of the custom property to use for correlation.
& o

Figure 15 Neuron ESB Workflow Endpoint Correlation Set tab— Users can define the criteria that will determine what set of
messages will be processed by each instance of a Workflow. Users can define any combination of either custom properties,
Neuron ESB Header properties, SOAP headers, HTTP Headers or Regex or XPATH expressions against the body of each message.

Correlation is not limited to Correlated Workflows. Correlation sets can also be defined within any type
of Workflow using the Publish Message Workflow Activity followed by the Receive Message Workflow
Activity.

Workflow Execution Engine

Neuron ESB introduces Workflow Endpoints and Availability Groups for hosting workflows. A Workflow
Endpoint is a first-class citizen in the Neuron ESB ecosystem, similar to Service Endpoints or Adapter
Endpoints. A Workflow Endpoint is associated with a specific Workflow Definition created with the
Neuron ESB Workflow Designer. It acts in a subscriber role and is configured to receive messages from a
Topic by a specific Subscribing Party. Lastly, it’s assigned to a specific Availability Group which serves as
the runtime host (Neuron ESB workflow engine) for managing the execution of the Workflow Definition
associated with the Workflow Endpoint. Users can create any number of Availability Groups which in
turn can be assigned to any number of Workflow Endpoints.

http://www.neuronesb.com/

neuronXJesb

& Neuron ESB Explorer

Fle Vew Tools Hep

[| %~ | ® Running - 'o| BM | Configure Server | Category Fiter ~

=1olx]

YYou are reconnected in Online Mode to : DemoSolution

Connections # Workflow Endpoints

E & Tasks

|»

ST New 3 Delete
3 Import a Service -

E » Connection Method: Name ~ | Cateqory Availability Group Subscriber | Workflow Definition | Description

< Service Bindings
< Service Behaviors

= & Endpoints [
g Service Endpaints

@ Mdspter Encpoints | £ () Apply () Cancel B
-

P JY IRl | 3 WorkflowEndpointSample General Workflow Order Process Host RequestSub. RequestReplyWorkflow

LT —

gl | _’]— General | Correlation Set | Settings
(D wessaono
g F Enabled

Repository

Name: IWOVWNEMDD‘"‘SBWNE Workflow Definition: Ikaquestkeplywarkﬁow j

® Connectons
il Description: | subscriber: Imaquesrsub j
W Seauy LI Topic: IkBqutworkﬂow j
w Processes Category: IGeneraI j Availability Group: Iworkﬂcw Order Process Host j
g Deployment
& oy

Figure 16 Neuron ESB Workflow Endpoints — The General Tab of Workflow Endpoint allows users to configure the Subscriber ID,

Topic, Workflow Definition and Availability Group.

Neuron ESB’s Workflow Endpoints also employ configurable limits on workflow execution in order to not
overload host servers. The Neuron ESB workflow engine utilizes a persistent queue built inside of SQL
Server to schedule the execution of workflow instances. The persistent queue allows workflows to be

interrupted if it is necessary to restart the ESB Service or the host service, and the workflow engine can

restart work processing when the Workflow Endpoint is restarted.

& Neuron ESB Explorer

Fie View Tools Hep

[| %~ | ® Running - o] B8 | Configure Server | Category Fiter -

~=[olx]

You are reconnected in Online Mode to : DemoSalution

Connections ﬂ‘.‘ Workflow Endpoints
8 © Tasks 21 i7" New €3 Delete
3 Importa service —
= ® Connection Method Name ' Category ' Availability Groun Subscriber | Workflow Definition Description

<y Service Bindings

& Service Behaviors
S s Endpoints

g Service Endpoints

@ e Enonts :@ Apply @ Cancel B

@ Adapter Registratic | 3l WorkflowEndpointSample General ~ Workflow Order Process Host ReguestSub RequestReplyWorkflow

ERTr—
< | _’]_ General | Correlation Set | Settings
D e
B reposton MaxConcurent [0
-

Connections Max Tracking Izss
Variable Length:

Securtty

|7 Enable tracking workflow activity execution
' Store arguments and variables for Workflow Tracking

P e Sie g
®

Deployment

Activity

Figure 17 Neuron ESB Workflow Endpoints — The Settings Tab of Workflow Endpoint allows users to configure the Maximum
number of concurrent Workflows that should be allowed to run at any one time in the specified hosting environment (i.e.

Availability Group). It allows users to set limits on the amount of event tracking data that is collected at runtime.

http://www.neuronesb.com/

neuronxy

While Workflow Endpoints contain the configuration specific to setting up the environment for
executing a Workflow, Availability Groups use the configuration to provide the actual runtime hosting
environment for the Workflow. Availability Groups introduce a new form of isolation and reliability
inside of Neuron ESB’s Runtime Windows service. Availability Groups are isolated into their own process
space and execute as child processes of the Neuron ESB Runtime Windows service. If a fatal error occurs
that causes the Availability Group to fail, the Neuron ESB Server can restart the Availability Group on the
same server, or on a different server when Neuron ESB is being run in a clustered configuration (see
Figure 2).

Through the Deployment Settings tab of an Availability Group, users can configure on what servers, in
which specific Deployment Groups they want an Availability Group host to run on. When in a clustered
configuration, the Neuron ESB Workflow Engine will schedule execution of Workflows to the selected
Primary servers within the clustered configuration, monitoring CPU, Memory and the configurable Max
Concurrent Workflows property on the Settings tab of the Workflow Endpoint. Workflow execution will
be evenly spread across all configured servers depending on their resource limits.

Deploying Workflows

Neuron ESB 3.5 makes deploying Workflows just as easy as deploying most other entities within Neuron.
Once a Workflow Definition has been created and saved (i.e. click the Apply button followed by the Save
button), an Availability Group must be created to serve as the runtime host for the Workflow. If one
already exist, it may be practical to reuse it. Once the Availability Group has either been created or
identified, a Topic and Subscriber must be created. Lastly, a Workflow Endpoint must be configured for
the Workflow Definition using the Availability Group, Subscriber and Topic. Deploying a Workflow
involves these 5 entities:

o Workflow Definition
e Availability Group

e Topic

e Subscriber

o Workflow Endpoint

In Neuron ESB 3.5, each Workflow entity created within the Neuron ESB Explorer (i.e. Availability Group,
Workflow Endpoint, Workflow Definition) are saved like all other entities; as individual XML files within
dedicated folders on disk. The same deployment methods are used with these as are used with other
Neuron ESB entities such as Topics and Endpoints. This also means that when changes are saved, or
these entities are deployed to another server, the Neuron ESB Runtime and Workflow host will
automatically detect the additions, deletions or changes and load them for execution.

http://www.neuronesb.com/

P

neuronxy

. E:\WebcCast\Solutions\DemoSolution\Workf

()v| ~ Computer ¥ New Volume (E:) ¥ W

| He Edt Vew Toos Help

Organze ~ Incudein ibrary ~ Share with

= | DemoSolution |
AccessControlLists Name * Date modified Type
AdapterEndpoints

AdapterPolices Workflow Order Process Host.xml 10/2/2014 4:01 PM XML Document
Adapters

AvailabiityGroups
Behaviors

Bindings
Credentials
Databases
DeploymentGroups
docs

Name * Date modified Type

EnvironmentVariables
history J & Newworkflowl.xml 10/1/2014 3:22 PM XML Document
Keys £ OneWayWorkflow.xml 8/5/2014 12:58 PM XML Document
MessagePatterns ©| RequestReplyWorkfiow.xmi 10/2/2014 3:17 PM XML Document
Parties
Processes
schema
ServiceEndpoints
ServicePolices
Topics Name “ Date modified Type

P — % WorkflowEndpointSample.xml 10/2/2014 3:19 PM XML Document
WorkflowEndpoints
wsdl
xsit
Zones LI

Figure 18 Neuron ESB Workflow Entity Folders — Neuron ESB Workflow Entities are saved as individual XML files in the Neuron
ESB Solution directory.

ESB Message Integration
The Neuron Workflow engine and Designer provide a number of integration points into the Neuron ESB
Messaging system, some of which are:

e Failed Message Reporting
e Publishing to Topics

e Service Endpoints

e Adapter Endpoints

o Auditing Messages

Failed Message Reporting

Neuron ESB’s workflow engine integrates directly with Neuron ESB’s auditing service to report on
messages that failed while being processed by workflows. This furthers Neuron ESB’s goal not to lose
messages during transport and processing of messages. Messages that fail during workflow execution
can be viewed using Neuron ESB Explorer’s Failed Messages report. Additionally, all the messages of a
failed or in flight workflow can be inspected through the new Neuron ESB Workflow Tracking console.

To support integration with Failed Message Reporting, additional properties were added to the Failed
Message report, specifically the Workflow Name, Workflow Instance ID and Workflow Endpoint Name.
This allows users to correlate failed messages back against the specific instances of a Workflow that
generated them.

http://www.neuronesb.com/

neuronxyeso

Publishing to Topics
Just as in the Neuron ESB Business Process Designer, users can directly publish messages to Neuron ESB
Topics using the Publish Message and Publish Request Message Workflow Activities.

The Publish Request Message Workflow Activity allows users to make request/response type calls over
the bus by publishing the request message to a Topic (must be Topic other than that configured in the
Workflow Endpoint). Neuron ESB will route the message to a subscribing party which could either be an
Adapter, Service Connector or a remotely hosted Party (endpoint). That party will process the request
and publish the response back to the bus at which point Neuron ESB will return the response back to the
Workflow instance that initiated the request. This can be used for bus driven, decoupled,
request/response calls.

Alternatively, the Publish Message Workflow Activity can be used to publish messages to a Topic using
any of the other Neuron ESB message semantics such as Multicast (fire and forgot), Reply, Direct or
Routed. Once published, the Neuron ESB Messaging system will route the message to all eligible
subscribers.

Neuron Workflow Host Neuron ESB Runtime Host

Waorkflow Endpoint
Workflows

Subscriber (Party))

Topic
(TCP, Named Pipes, Rabbit MQ, Peeror MSMQ)

%

Figure 19 Publish (Request) Message flow— Either the Publish Message or Publish Request Message workflow activity allows for
direct integration to the Neuron ESB pub/sub messaging system. These activities can publish directly to any Topic.

The Publish Message Workflow Activity can also be used for Correlated request/reply scenarios. Users
can define a Correlation Set (a property on the Workflow Activity) and set the semantic to Multicast.
Once this is done, the outgoing message that is published to the Topic from the Workflow will be used
to initialize the values of the Correlation Set. The initialized values for the Correlation Set are persisted
to user defined correlation variable. To receive the expected response message, a Receive Message
Workflow Activity must be added to the Workflow following the Publish Message Workflow Activity and
be configured with the correlation variable.

For example, imagine a common partner scenario where a request is sent to a vendor. However, the
response may not be received immediately. In fact, it could be hours or days before the response is sent

http://www.neuronesb.com/

neuronxy

back from the Vendor. In that time, the Workflow would have been unloaded from memory and
persisted to the database. The runtime environment may have also been restarted or even moved. Once
the response message is received, it’s the job of the Neuron ESB runtime environment to route the
response back to the correct “instance” of the Workflow, i.e. the Workflow instance that sent out the
original request. In many scenarios like this there will not be a unique identifier within the response
message to correlate on. In those cases users can define on the outgoing request message a Correlation
Set. Correlation Set is a property exposed by the Publish Message Workflow Activity. When activated it
will display the Correlation Set dialog as shown in the figure below. This is identical to the user interface
of the Correlation Set tab of the Workflow Endpoint.

Edit Correlation Set ;lglil
E Custom Properties
E Custom Properties 1 item

=] [o]

roporypame =

¥ Header Properties

= HTTP
HTTP Headers No items
Query Parameters No items
= Message Body
Reqular Expressions No items
XPath Expressions No items
=] SOAP
SOAP Headers No items

Property Name
The name of the custom property to use for correlation.

Save I Cancel

Figure 20 Neuron ESB Publish Message Correlation Set dialog— Users can define the criteria that will determine what set of
messages will be processed by each instance of a Workflow. Users can define any combination of either custom properties,
Neuron ESB Header properties, SOAP headers, HTTP Headers or Regex or XPATH expressions against the body of each message.

In the case of a purchase order, a user may define a Correlation Set as a combination of customer
number, vendor id and purchase order number. When a response message is published to the bus to the
expected topic, those property values will be retrieved and evaluated and if a match is found, the
response message will be routed to the Receive Message Workflow Activity that directly follows the
Publish Message Workflow Activity on the correct instance of the Workflow. The Receive Message
Workflow Activity must be used either with a Correlated Workflow, or it must follow a Publish Message
Workflow Activity.

http://www.neuronesb.com/

neuronXJesb

Service Endpoints

Neuron ESB includes a Service Broker that enables organizations to deploy Neuron ESB as a Service
Gateway, providing mediation, security, hosting and a number of other services. Service Connectors are
essentially registrations within Neuron ESB that point to existing services hosted within an organization,
partner or cloud domain. In previous versions of Neuron ESB, the only way to route a request message
to a Service Connector (externally hosted service registered with Neuron ESB) was by publishing the
request to a Topic, whose underlying publishing service would then route to the Service Connector. This
meant that every web service request received by Neuron had to go through the pub/sub infrastructure
if an externally hosted service had to be called. Although the pub/sub Topic Transport of choice would
usually be an in-memory option, this still led to additional overhead and configuration at runtime.

Neuron ESB 3.5 provides both a Service Endpoint Workflow Activity and Process Step that can be used
with either the new Neuron ESB Workflow Designer or the existing Business Process Designer. Either
one allows a user to directly call any Service Endpoint registered with Neuron, without the need to
publish a request to a Topic, eliminating all pub/sub overhead.

This allows users to create either a Workflow or Business Process that defines an end-to-end solution
without the pub/sub abstraction in the middle.

1.) Publish Message Workflow Activity

Neuron Workflow Host Neuron ESB Runtime Host

Workflow Endpoint
Workflows

Subscriber (Party)}

2.) Service/Adapter Endpoint Workflow Activity o

Neuron Workflow Host
Workflow Endpoint

Adapier/Service Endpoint

HTTP/S

Figure 21 Service Endpoint/Adapter Endpoint Workflow Activities compared with Publish Workflow Activities — When using the
Service or Adapter Endpoint Workflow Activities, the entire Neuron ESB Messaging infrastructure is circumvented, allowing
registered endpoints to be called directly.

http://www.neuronesb.com/

neuronxy

Adapter Endpoints

A core feature of Application and Data Integration servers is their ability to bridge 3™ party applications,
databases, technologies, protocols or transports. Neuron ESB provides this through either its library of
built in adapters and by allowing users to build their own adapters using the Neuron ESB Adapter
Framework. In many ways, Adapters provide capabilities similar to those found in Neuron ESB’s Service
Broker specifically:

e Bridging external endpoints
e Functioning as subscribers

Just as with Service Connectors, Adapter Endpoints would normally need to be called through the
Neuron ESB Messaging system where a message is published to a Topic and then routed to eligible
subscribers, one of which could be an Adapter Endpoint.

Neuron ESB 3.5 provides both an Adapter Endpoint Workflow Activity and a Process Step that can be
used with either the new Neuron ESB Workflow Designer or the existing Business Process Designer.
Either one allows a user to directly call any Adapter Endpoint registered with Neuron, without the need
to publish a message to a Topic, eliminating all pub/sub overhead (Figure 21).

This allows users to create either a Workflow or Business Process that defines an end-to-end solution
without the pub/sub abstraction in the middle. These activities and process steps should always be used
with any request/response type of messaging since there will never be more than one subscribing
endpoint fulfilling the request. For fire-and-forget messaging (i.e. multicast/datagram), unless there is a
need to decouple using the topic-based pub/sub engine as in the case where the publishing process
should not know who the subscribing endpoints/parties are, then using these activities and process
steps would be a preferred approach.

Auditing Messages

Neuron ESB provides message tracking capabilities at several levels, commonly referred to as Message
Auditing. When used, messages either published to or subscribed to through the Neuron ESB Messaging
system are placed in the Neuron Audit tables (database) where they can be viewed, searched for, edited
and resubmitted back to the bus within the Message History report. The first level most commonly used
is configured at the Topic level as shown in the Figure below.

http://www.neuronesb.com/

.

neuronxy

%% Neuron ESB Explorer _ ol x|

File View Tools Help

[l | %%~ | @ Stopped - o/ M | Configure Server | Category Fiter -

You are working offline. E:\WebCast\Solutions\DemoSolution

= & Tasks
Look For: End
A GetStarted
= # Publish and il
D Topics [“INew [l Copy & Delete |% Hide Detail
aPubhshers | | Name | Cateaory ‘ Zone | Transport Tvoe Descrition -
& subscribers L @R= N Account CollectionIntearation | Enterprise
$ conditions b (D Adaoters General Enterprise Tcp |
b (D Assure General Enterprise Peer d
b D Biling General Enterprise = Msma
b P Demo WehCast Enterprise Tcp ~|
Annhs Cancel Aigwing Topic Account (]
General | Networking Auditing | Security | Dependencies
aing Auditing: |Disah\ed ;l (moreinfo)

|_ Audit Custom Message Properties

Repository
|_ Audit Massage Body

Connections ™ Audit messages before the publish process executes. Otherwise, messages are audited after the publish process executes.

l_ Audit messages after the receive process executes. Otherwise, messages are audited before the receive process executes.

Pasw &g af

Security |_ Audit published massages when there are no racipients.
¥ Use verbose detail when auditing messages failures.
Processes ¥ audic messages asynchronously.
7
Deployment
11 of 11 selected.
Activity Al # A B c D E F G H I) K L M N 4] P Q R S T u Vvow X Y z

Figure 22 Neuron ESB Auditing Configuration — Global auditing for the Neuron ESB Messaging system can be configured at the
Topic level through the Neuron ESB Explorer.

By default, this provides blanket auditing. In other words, all messages that are published to or
subscribed to from the Topic will be stored in the Neuron Audit tables. The properties on the Auditing
tab of the Topic control the time and granularity of the messaging auditing feature. For example, users
can choose to “audit” either before or after a process executes or determine whether or not either the
message data or custom properties will get tracked, along with the exception stack. We call this level of
Auditing “Global” since it tracks everything that flows through a Topic. In many cases though, users
require a more granular level of control over message Auditing. Specifically, the ability to Audit a
message at a point in a process where it matters most. In some cases it may be desirable to audit just a
fragment of the message rather than the entire message. For those more common scenarios Neuron
ESB provides a configurable Neuron Audit Process Step that users can add to an existing Neuron ESB
Business Process to strategically Audit a message as part of a defined process.

The Neuron ESB Audit Process Step can also be used to capture an exception in a Business Process and
store the affected message, its context and the exception information are placed in the Neuron Audit
tables (database) where they can be viewed, searched for, edited and resubmitted back to the bus
within the Failed Message report. This similar feature is also exposed by Service and Adapter endpoint
policies, whereas if a delivery failure occurs the policy can be configured to capture the message,
context and exception information and place all into the Neuron Audit tables, managed through the
Failed Message report.

http://www.neuronesb.com/

neuronxy

In Neuron ESB 3.5, the Neuron ESB Audit Process Step has been completely ported to a Workflow
Activity, where it can be used in exactly the same way as it is used today in a Neuron ESB Business
Process. Users can drag the Audit Message Workflow Activity onto the Workflow designer, configure it
to capture a specific message, set the properties. Now that message will be viewable, searchable and
editable within either the Message History or Failed Message reports (depending on context) as shown
in the figure below.

NewWorkflow1 X

O % P e g Seet fo [0 2 A category: General -
Neworkflow1 - Flowchart Expand All Collapse Al

sy :‘

®

Start

7 vitetne W wrtetne
False
Text message.Text Text No Purchae Order™

Has Purchase Order?

& ©#Code Actvity ‘ |7/ Auditnio Purchase Order as Fallre

5 Eventoo
\1‘ TryCatch

3] Try Catch Update SAP

Variables Arguments Imports

Figure 23 Neuron ESB Auditing within a Workflow — Audit Workflow Activity can be used anywhere within a Workflow to capture
the state of the message. It can also be used within a Try/Catch Activity to capture the exception, context and message, storing
this information in the Neuron Audit tables where it can be viewed in the Failed Message report.

Workflow Tracking and Playback

Neuron ESB’s workflow engine implements proprietary tracking providers that are used to collect and
report execution history for the workflow. The primary tracking provider stores workflow execution
tracking events and data into a Microsoft SQL Server database. Once collected in the database, Neuron
ESB Explorer provides the monitoring interface that developers or administrators can use to observe the
status of each executing workflow, and if desired, play back the workflow’s execution. Using Neuron ESB
Workflow Tracking, users can observe the execution history and state transitions of the workflow. Users
can also step through the execution of the activities for the workflow, viewing both the input arguments
and the values that are output by each workflow activity. Users are also able to explore error conditions
and view exception messages for errors that occurred during the workflow.

Neuron ESB Workflow Tracking (seen in the Figure below) is the central user interface for querying and
viewing the tracking information for all workflow instances; those that are in process as well as those
that have completed.

http://www.neuronesb.com/

.

neuronxy

& Neuron ESB Explorer =3l x|
Fle View Toos Help
|4 | % | @ Running - |0/ B | Configure Server | Category Fiter ~
You are working offine. E:\Neuron\Treining\Neuron 3.5\Accumulator Workflow
B o Activity Database: . - NeuronESBS_new1009 - state: - From: 10192014 12000041 & Tox 10142014 11:59:59PM & | Max Records: | 1000 B
[if] Real-Time =
8 g s oromem (G °
E + Health
BB rdpont Health group by Area oo 2 fisd here to group by that ied
= 2 Start Time Workflow Instance Workfiow Definition Workflow Endpoint State Topic Subscriber Machine Name Instance &
@ active sessions = fa A Aa pa Aa M pa fa
B Message Hstory 107 51 A b o Completed Oneway OneWaysub MWASZNICKY0L oerauLT—
'] 107 970 Al One Way Workflow Completed Oneway OnewaySub MWASZNICKY01 DEFAULT!
[Workflow Tracking 10/14/2014 08:51:23.0900 Al 9b89ca64-8505-42b1-b9bb-f2 RequestReplyWorkflow Request Reply Workflow Completed RRtTopic. RRSub MWASZNICKY01 DEFAULTI
10/14/2014 08:51:23.0270 Al ed5e-4296-8a26 Request Reply Workflow Completed RRTopic RRSUD MWASZNICKYOL DEFAULTI
1073 8730 Al a15a7bBc-98af 4767-98d4-cel quest Reply Workllow Completed RRTopic RRSub MWASZNICKYDL DEFAULTI
10/ :51:22.7170 A1 Request Reply Workflow Completed RRTopic RRSUD MWASZNICKYOL DEFAULTI
1073 oA d-Dfee 45t quest Reply Workllow Completed RRTopic RRSub MWASZNICKYD1 DEFAULTI
1073 030 Al Request Reply Workilow Completed RRTopic RRSUD MWASZNICKYOL DEFAULTI
10/ 1670 Al didsad 57 quest Reply Workflow Completed RRTopic RRSUb MWASZNICKYOL DEFAULTI
1073 0330 Al 920205841 8t Request Reply Workflow Completed RRTopic RRSUD MWASZNICKYOL DEFAULTI
10/14/2014 08:51:21.9070 Al 227F1e5c-263c-4640-9430-a quest Reply Workllow Completed RRTopic RRSUD MWASZNICKYDL DEFAULTI
10/14/2014 08:51:21.7730 Al d9B64781-2d2b-4803-9ca2-ct RequestReplyWorkfiow Request Reply Workflow Completed RRTopic RRSUD MWASZNICKYOL DEFAULTI
10/14/2014 08:51:21,6270 Al -7765-4a30-bise-S: quest Reply Workllow Completed RRTopic RRSUD MWASZNICKYDL DEFAULTI
10/ 151:21.4730 Al 6162¢671-9F3b 2 Workflow Completed RRTopic RRSUD MWASZNICKYDL DEFAULTI
10/14/2014 08:51:21.2630 Al -faaf 474b-8363-5: Request Reply Workflow Completed RRTopic RRSUD MWASZNIGKYDL DEFAULTI
@ M= 10 70 A b | Workllow ~ Completed RRTopic RRSub MWASZNICKY01 DEFAULTI
10/14/2014 08:51:20.6730 Al b17b4d1b-30a6-47b-918e- Request Reply Workflow Completed RRTopic RRSUD MWASZNICKYOL DEFAULTI
y oo e 10/14/2014 08:51:20.5200 Al ddface05-e618-453c-Bcdd-a2 RequestReplyWorkflow Request Reply Worklow ~ Completed RRTopic RRSub MWASZNICKYO1 DEFAULT!
10/ :51:20.3400 A1 i Request Reply Workilow Completed RRTopic RRSUD MWASZNICKYOL DEFAULTI
GG Comectins 10/14/2014 08:51:20.1930 Al dfedc623-d00d-407F-98¢5-0bi RequestReplyWorkflow Request Reply Workflow Completed RRTopic RRSub MWASZNICKYD1 DEFAULTI
1073 0300 A Request Reply Workilow Completed RRTopic RRSUD MWASZNICKYOL DEFAULTI
@ Securty 10/ 4 d37-be q ply Workllow Completed RRTopic RRSUb MWASZNICKYO1 DEFAULTI
10/ 151:17.0400 A 201 b Request Reply Workflow Completed RRTopic RRSUD MWASZNICKYOL DEFAULTI
9’“ EE— 107 :34:52.7670 A1 Sum Workdiow Completed Topict Workflowsubscriber MWASZNICKYDL DEFAULT!
1073 900 A1 f38-323b, Sum Workdfow Completed Topiel WorkfiowSubseriber MWASZNICKYDL DEFAULTI
g Deployment 10/14/2014 08:34:52.5630 Al -5190-41c1-b222-50 Sum Workdlow Completed Topict ‘Workflowsubscriber MWASZNIGKYDL DEFAULT
e — PR PR - PR e maremenine i

Figure 24 Neuron ESB Workflow Tracking — Provides users the ability to see the state of any Workflow Instance during execution
or when completed. Users can group, sort, filter, delete, search and choose which columns to include in the main view.

The Workflow Tracking interface allows users to group, sort, filter, search and delete all information
related to the execution of Workflows. Each row in the table represents a unique instance of a
Workflow. Double-clicking on any row will bring up the detailed tracking profile of the Workflow
Instance. Users can examine the state of the messages, variables and arguments at each stage of the
Workflow Instance by navigating through the Tracking events (Tracking Tab), or highlighting a Workflow
Activity in the Workflow instance diagram displayed in the main pane. Users can open any ESB Message
variable into the Edit Message dialog where it can be edited and resubmitted back to the Neuron ESB
Messaging system.

http://www.neuronesb.com/

.

neuronxy

7 Neuron ESB Explorer -0 1‘

Ele View Took Help

i |4 | %~ | ® Running - [0/ B8 | Configure Server | Category Filter - |

You are working offine. E:\Neuron\Training\Neuron 3.5\Accumulator Workflow

B » Activity Database: . - NeuronESBS_new1009 v State: ~ From: 10-14-2014 12:00:00 AM : To: 10-14-2014 11:59:59 PM : Max Records: 1000 - -
[if] Real-Time . =
. : Run Report Delete All .
(] Running History B> X (<]) |
= ® Health

B Encinoint Health Workflow Endosint ~ ¢ RequestReplyWorkflow: e082a281-c471-473f 8244 58a5699fa8dc - o] x|

5 » Database Reports i r— e T Expand All Collapse Al Tracking | History =
[Active Sessions W o= Aa Aa = s
B vessage History (4| one way Workflow (30 items) Time Acy I
B Faied Messages 2| Request Reply Workflow (21 tems) 10/14/2014 08:51:22.7 DynamicActivity
B workfiow Tracking 2 start Tme Workfiow Instance Workdlow De 10/14/2014 08:51:22.7 Flowchart Tnste

10/14/2014 08:51:23.0900 Al 9bB9ca64-850a-42b1-bobb-f2 RequestReply 2, Flowchart) 10/14/2014 08:51:22.7 Create Reply Med DEFA

10/14/2014 08:51:23.0270 Al dd4{f339-e45¢
10/14/2014 08:51:22.7 Create Reply Mes
10/14/2014 08:51:22.8730 Al a15a7hBc-98af-47f7-98d4-cel RequestReph DEFA

10/14/2014 08:51:22.7170 Al <082a281-c471473-8244-58 RequestRep 10/14/2014 08:51:22.7. Set the Reply Te) | o

10/14/2014 08:51:22.5770 Al BeS3cl3d-Ofee-45h7-95c1-08 RequestReph Start 10/14/2014 08:51:22.7. Set the Reply Tey DEFA
10/14/2014 08:51:22.3030 Al 9380bd2d- 10/14/2014 08:51:22.7. Flowchart DEFA
10/14/2014 08:51:22.1870 Al dfdSad41-885: d8- 7 1n0/14/2014 0851272 r PunamicArtivity _" DEFA
10/14/2014 08:51:22.0330 Al 9a92h584-17ce-4686-85cc-8f RequestRepl ‘ L4 DEFA
10/14/2014 08:51:21.9070 Al 227F1e5c-263¢-4640-9430-fat RequestReply i = ;‘ DEFA
10/ :51:21.7730 Al d986d781-2d2b- State Executing DEFA
10/14/2014 08:51:21.6270 Al 63adSe87-77¢ bi6e-6 A8 Set the Reply Text TypeName Neuron.Esb.Activiti DEFA
10/14/2014 08:51:21.4730 Al 61f2c671-9f3b-4f1a-8283-31 RequestReply reply.Text = "hi mom, I'm home" J DEFA
10/14/2014 08:51:21.2630 Al 4f5904d6-f4af-474b-8363-82: RequestReph DEFA
L. Messaging
10/14/2014 08:51:20.8370 Al 42ea5a59-abe9-4521-9210-21 RequestRepl DEFA
g 10/14/2014 08:51:20,6730 Al b17b4d1b-90a6-47fb-918e-4¢ RequestReph, DEFA
Repository
10/14/2014 08:51:20,5200 Al ddface05-e515 dd DEFA
C T — 10/ :51:20.3400 Al - " DEFA
5“ 10/14/2014 08:51:20.1930 Al dfedc623-d00d-407f-38¢5-0bi RequestReply 4 | | » DEFA
:51:20.0300 F baf3-54t -
@ S 10/14/2014 Al 4b33ccee-e2by ¥ Q7% n =l DEFA
10/14/2014 08:51:19.8670 Al 73c1ee07-cd11-4684-ad37-b¢ RequestReph DEFA
y — 10/14/2014 08:51:17.0400 Al 2c17ea1-cIab-400c-992e-2¢ RequestReplyWorkflow Request Reply Workflow Completed RRTopic RRSub MWASZNICKYO1 DEFA
2| Sum Workflow (349 items)
g Deployment 2 start Time Workflow Instance Workflow Definition Workflow Endpoint state Topic ‘Subscriber Machine Name Instz
3

4
-
Lootens

Figure 25 Neuron ESB Workflow Tracking Detail — Users can view the detailed record of any Workflow Instance. This will provide

a graphical view of the Workflow Instance, its Tracking information including all state information. Users can navigate the
Tracking events to replay the execution of the Workflow Instance.

Lastly, all the rows in the current view can be exported to Excel by right clicking the grid and selecting
“Export to Excel...” from the context menu.

Workflow Control and Monitoring

Neuron ESB 3.5 provides Workflow control and monitoring through the new Workflow Tracking, Neuron
ESB Endpoint Health and WMI Performance Counters. Workflow Tracking provides users with control
commands such as Start, Suspend, Cancel, and Abort or Delete that can be used against any selected
Workflow instance or group of Workflow Instances. Control commands for Workflow instances are
context sensitive, depending on their current state. For example, a Workflow Instance that is in an
unloaded or suspended state can be Started, Cancelled or Aborted. An Aborted, Completed or Cancelled
Workflow Instance can be deleted while a Started one can be suspended. Control commands are
accessed through the right click context menu of the Workflow Tracking grid (as shown in the figure
below).

http://www.neuronesb.com/

.

neuronxy

%} Neuron ESB Explorer

Ele View Tools Help

] ‘%~ | ® Running - o BM Configure Server | Category Fiter -

You are working offline. E:\Neuron\Training\Meuron 3.5\Accumulator Workflow

B ® Activity Database: . - NeuronESBS_new1009 ~ State: ~ From: 10-14-2014 12:00:00 AM o To
[i7) real-Time
o [Run Report 3 Delete All
E‘] Running History
B @ Health 2 Start Time Workflow Instance Workflow Definition Workflow Endpoint State
E® Endpoint Health W = Aa Aa Aa Aa
[Z s Database Reports 10/14/2014 08:28:14.6900 Al 24c99a85-c2ea-4b59-80e5-65 WorkflowaTtommotato
[Active Sessions »
@ Message History 10/14/2014 08:28:14.6470 Al 2222b9b8-B777-4290-926f-a¢ WorkffowAccu S Cgmpleted
10/14/2014 08:28:14.6470 Al 9ch1aBc7-35df-4278-968f-4f2 WorkflowAccu spe Cempleted
I, Failed Messages cancel
10/14/2014 08:28:14.6000 Al cacbl4ec-9bee-44ab-82a7-db WorkflowAccu Cympleted
|; Workflow Tracking Refresh
10/14/2014 08:28:14.6000 Al ea68ac04-4799-4d53-bb02-a¢ WorkflowAccu Cempleted
10/14/2014 08:28:14.1470 Al 6f6a26d2-4ecd-4e61-b9e0-c8 WorkflowAca Cempleted
10/14/2014 08:28:14.1430 Al 717b4e63-56f1-4d85-b205-8: WorkflowAccumulator Sum Workflow Cympleted
10/14/2014 08:28:14.0170 Al 877fh49b-0451-46bF-9015-db WnrhlgwA{{umulatnr Sum Worldlow Chmpleted
10/14/2014 08:28:14.0170 Al 95d94d2e-53eB-4cec-83ac-9c¢ WorkflowAccumulator Sum Workflow Completed
10/14/2014 08:28:13.9770 Al c6ebafbc-cd00-426a-baac-77. WorkflowAccumulator Sum Workflow ‘Completed

Figure 25 Neuron ESB Workflow Tracking Control Commands — Accessible through the right click context menu. Users can
control the execution state of any Workflow instance.

While Workflow Tracking provides detailed information for each Workflow instance, both executing and
completed, a summary view of real time Workflow execution activity can be viewed through the Neuron
ESB Endpoint Health interface.

Neuron ESB Endpoint Health has been refactored to accommodate real time activity monitoring for the
Workflow hosting environments (Availability Groups) as well as the Workflow Endpoints that they host.
The new user interface provides users the ability to group and sort, and now lists all machines in the
selected deployment group. The Rate measurement has also been changed. In previous versions of
Neuron ESB, the Rate column was calculated based on the last time the Neuron ESB runtime was
started. However, this meant that the value reflected could become less useful over time if there was
not a steady continuous stream of processing. The Rate is now calculated based on the refresh window
(default is 15 seconds which can be changed in Zone settings). Effectively we calculate a new rate every
15 seconds based on what was processed in that window.

http://www.neuronesb.com/

.

neuronxy

g Neuron ESB Explorer -0 il
Fle View Tooks Hebp
[l |- | ® Running - o] B8 | Configure Server | Category Fiter - I

You are working offine. E:\Neuron\ Training|\Neuron 3.5\Accumulator Workflow

5 e Activity o
P Dashboard Monitoring
] Real-Tme Connected 4:03:53 PM
&) Running History

= s Health

B ettt Deployment Group: [Development ~ | B Stop Monitoring | '8 Restart Service [Stop Service M Clear Panel

[s Database Reports [§ Drag & column header here to group by that column.

[@ Active Sessions

X.

i CK_.. TCP Publi
® MWASZNICK

TCPPublishingService Topic3 Started 10/14/2014 16:03:41 0 2000

[B Message History

0
Falled Messages @ MWASZNICK... TCP PublishingService Topic Started 10/14/2014 16:03:41 0 2000 0 0
B workfiow Tracking @ MWASZNICK... TePPublishingService OneWay Storted 10/14/2014 16:03:41 236 3563 0 0
@ MWASZNICK... TePPublishingService RRTopic Started 10142014 16:03:42 0 2 0 0
[»() Messaging Drag a column header here to group by that column.

ol e Host Name | state |primary server | LastHeartbeat |active [pending |waiting |completed |Aborted |suspended |Rate |warnings |Errors |
5‘ MWASZNICK ... 'Werkflow EndPaint Sum Workflow Started mwasznicky0l 10/14/2014 4:03:38PM 0 0 0 0 0 0 0 0 0

MWASZNICK ... WorkflowEndPaint OneWayWorkflow Started muasznickyll 10/14/2014 4:03:38PM 7 169 0 978 0 [} 632 0 0
MWASZNICK... WorkflowEndPaint RequestReply Workdiow Started muasznickyll 10/14/2014 4:03:38PM 0 0 0 21 0 [} 0 0 0

P o
}}" Processes
5 Deployment

Figure 26 Neuron ESB Endpoint Health — Real time monitoring of both Neuron ESB Messaging and Workflow. Availability Groups
(child process) and their Workflow Endpoints can be stopped and started from here. Real time activity of Workflows can be
monitored.

The Neuron ESB Endpoint Health interface has a scalable horizontal divider, separating Neuron ESB
Messaging entities such as Topics, Adapter and Service Endpoints from Workflow entities such as
Availability Groups and their associated Workflow Endpoints. A context menu is exposed at the entity
level that allows users to restart any selected entity.

Lastly, two new WMI Performance Counter groups are introduced with Workflow; “Neuron
AvailabilityGroups” and “Neuron Workflow Endpoints”. Although “Neuron AvailabilityGroups” only
exposes counters to track Errors and Warnings, “Neuron Workflow Endpoints” exposes a number of
counters, including:

e Aborted

e Active

e Cancelled

e Completed

e CompletionRate
e Errors

e Idle

e PendingEvents
e PendingTime

e Persisted

e Terminated

e WaitTime

http://www.neuronesb.com/

neuronXJesb

e Warnings

These WMI counters can used by third party tools for remote monitoring solutions as well as used
within Microsoft Performance Monitor.

Neuron ESB WMI Performance Counters Installation

The WMI Counters for Workflow are created by the Setup.exe installer. This feature is represented on
the Feature Install page of the installation wizard by the “ESB Service Management Objects” and is
disabled (unchecked) by default. Neuron ESB Workflow, specifically the ability to monitor Workflow
activity within Endpoint Health, requires that this feature be selected and installed.

Please choose which Neuron ESB 3.5 features that you want to install on the computer.
Neuron ESB 3.5

Neuron Client API
ESB Service

ESB Service Management Objects *
T4 IScovery Service
» ¥l Adapters
» ¥ Neuron ESB Tools
» ¥ Plug-ins
Documentation
Samples

* Required for Workflow

Figure 27 Neuron ESB Setup.exe — Feature selection page of the Neuron ESB installation program. ESB Service Management
Objects feature controls the installation of all Neuron ESB WMI Performance counters.
Workflow Samples

Neuron ESB 3.5 ships several new Workflow samples accessible through the Neuron ESB Explorer’s
Sample Browser, shown in the figure below:

http://www.neuronesb.com/

neuronxy

¢ Neuron ESB Explorer x|
W Select a Sample
REST Client to SOAP Service « | [Sample Detais

SOAP Client to REST Service
REST Client to SQL Server Name: I
REST Client and Service with JS0M Encoding
REST Client and Service with Binary Payloads
Transports
BasicHttp
‘. One-Way
", Reguest-Reply
NetMsmg Configuration:
", OneWay
NetTep
" OneWay
i % RequestReply
£y WSHtp
i %, One-way
% Reguest-Replv
=175 Workflows
{4 Normal Workfiow
;% Request-Reply Workflow
% Correlated Workflow
Correlated Send and Receive
Custom Activities
%, Developing a Custom Workflow Activity
3 Microsoft WF Samples
! %, Importing a Microsoft Workflow Sample
* %, Using a Microsoft Workflow Sample as a Custom Workflow Activity

Setup Required: |

Visual Studio Solution: |

Description:

Open | Close

+

Figure 28 Neuron ESB Sample Browser — Accessible through the Neuron ESB Explorer’s View->Samples menu. All new Workflow
samples are encircled in red.

There are many Workflow Foundation (WF) samples available on the Microsoft Developer Network.
Since Neuron ESB 3.5 hosts its own Workflow Foundation runtime, many samples from Microsoft can be
used in Neuron ESB with little or no modifications.

Sample workflows can be imported into Neuron ESB Explorer. This has the advantage of being able to
reuse existing workflows and allows users to modify the workflow in the Neuron ESB Workflow
Designer.

Note: The Microsoft Windows Workflow (WF) Samples can be downloaded and installed from the
download link found on the Windows Workflow Samples page.

The new Neuron ESB Workflow samples that are included in 3.5:

Developing a Custom Workflow Activity

This sample demonstrates how to create a custom workflow activity that generates lorem ipsum
text. To test, compile the solution, copy the assembly to the \Program Files\Neuron ESB
v3\DEFAULT\Workflows folder and restart the Neuron Explorer. Includes: Visual Studio solution and
documentation.

Importing a Microsoft Workflow Sample
This sample demonstrates how to import the Switch activity that ships with the Microsoft samples into

Neuron ESB Explorer. This sample contains only documentation and requires that you install the
Windows Workflow (WF) Samples from the Microsoft site.

http://www.neuronesb.com/
http://msdn.microsoft.com/en-us/library/dd483375(v%3dvs.110).aspx

neuronxy

Microsoft Workflow Sample as a Custom Workflow Activity

This sample demonstrates how to use the FlowChartWithFaultHandling activity that ships with the
Microsoft samples into Neuron ESB Explorer. This sample contains only documentation and requires
that you install the Windows Workflow (WF) Samples from the Microsoft site.

Normal Workflow

This sample shows a simple Normal workflow that logs the text of the incoming ESBMessage as well as
the Workflow Instance ID. A Normal workflow is executed once for each message sent to the topic
associated with the Workflow Endpoint.

Request-Reply Workflow

This sample shows a Request-Reply workflow that accepts a promotion code on the text property of the
incoming ESBMessage and replies with a new ESBMessage where the text property contains the
discount corresponding to the promotion code. A Request-Reply workflow is executed once for each
message sent to the topic associated with the Workflow Endpoint.

Correlated Workflow

This sample shows a Correlated Workflow that joins order records after a Process has split them into
separate messages. A Correlated-type workflow is executed once for a unique set of messages
determined by the correlation set properties configured on the Workflow Endpoint. This is sometimes
referred to as a Singleton pattern. In this sample, orders are assigned to batches and the batch ID is used
to initialize the correlation set. All orders in batch 'BO01' are handled by one instance of the workflow
while all orders in batch 'B002' are handled by another workflow instance.

Correlated Send and Receive

This sample shows an order message sent to a normal-type workflow that then publishes it to another
topic for further processing. When that processing completes the order is sent back to the existing
instance of the workflow that published it. Routing to the original workflow is done by setting the
correlation set on the Publish Message Activity to the order ID.

Composition using Adapter and Service Endpoints

As referenced earlier in this document, Neuron ESB 3.5 provides an Adapter and Service Endpoint
Process Step that can be used in the Neuron ESB Business Process designer for creating real-time service
composition solutions by aggregating existing services and application endpoints into more innovative
business capabilities that can be accessed throughout an organization.

The advantage of the Adapter and Service Endpoint Process Steps is that they eliminate much of the
overhead traditionally seen when bus or other messaging architectures are incorporated in service
composition solutions where request/response type of message patterns are predominately employed.

http://www.neuronesb.com/

.

neuronxy

& Neuron ESB Explorer o =1

Fle View Tools Hep

Il | &~ | ® Stopped - o B | Configure Server | Category Fiter -

You are working offline. E:\WebCast\Solutions\DemoSolution

ayment Service Aggregation X - X
Processes =
Y @ pHEEX £ Zoom ~ & Import & Export £ Print [&Save [Copy |
#% EmaiProcessor Payment Service Aggregation & & searty ;l
EmitEnvVars
1 Generic Handlers 5l DearyptXML
 Dynamic_Validate_ mi 8] Encrypt XML
Exception_Handler call $ Sian XML

Endpoints
{» Exception_Handler E g verify Signed XML
GetThumbprint

&
Services
* HomeProcess A

JjsonConverter Payment Info Get Order Stock Quote iV publish

Main - Sub Process [Rules - wF

* MainProcess R s

15 MyFolder)) & Service
Order Process1 Service Adapter Service g Service Endpoint
OutboundSmipFi Endpaint | Endpoint | | Endpoint | ™
. ParalielTest o & Stovage

MNew Process 1 =

Mew Process 2 E Q LI

Mew Process 3 —
! 2 create El Bindings

Results Bindings (Collection)
e Messaging — — = General
Disable False
@ Nama
§ E
Results
2 - . Service Endpoint PaymentService
@d Connections Service Url hittp: /locabhost:8733/Design_Time |
A Ser Binding BasicHttp
| Me: attern Request-Reply
\ Securi
@ i iy Default
_,' Processes Type Siep) =t escripti
g Deployment Name
The name of the pipeline step

& < '

Figure 29 Neuron ESB Service Composition — Service composition example in the Business Designer using the Parallel process
step in conjunction with the new Adapter and Service Endpoint process steps encircled in Red.

The Adapter and Service Endpoint Process Steps allow users to call any configured Adapter Endpoint or
Service Endpoint (i.e. Service Connector) directly, without the need to publish the message to a Topic.
This works with either Request/Response or Multicast/Datagram types of messaging patterns.

Using these new process steps does not preclude the ability for users to dynamically specify which
service to call at runtime. For example, the Service Endpoint Process Step allows users to dynamically
set the name of the Service Connector to call at runtime by simply setting the Service property of the
ESB Message Header, using either the Set Property Process Step or any of the language Process Steps
such as the C# Process Step ex:

context.Data.Header.Service = "Payment Service";

WS-Discovery enabled runtime, parties and endpoints

Neuron ESB 3.5 now supports Web Services Dynamic Discovery (WS-Discovery) for its own Discovery
service, Neuron ESB runtime instances, Client Connectors (Neuron ESB hosted services) and remotely
hosted Neuron ESB Parties (i.e. client API). WS-Discovery is a powerful management standard and
technical specification that defines a multicast discovery protocol to locate services on a local network.
It operates over TCP and UDP port 3702 and uses IP multicast address 239.255.255.250. As the name
suggests, the actual communication between nodes is done using web services standards,

notably SOAP-over-UDP.

http://www.neuronesb.com/

neuronXJesb

By default, the WS-Discovery protocol is enabled for the Discovery service, Neuron ESB runtime
instances, Client Connectors (Neuron ESB hosted services), whereas remotely hosted Neuron ESB Parties
must be specifically enabled through an app.config setting (see tables below).

Neuron ESB Discovery APl — App.config
key lVaue |Descripon |
WSDiscoveryManagedPort 9021 Represents the TCP
port used for Managed
probe requests using
the Neuron ESB
Discovery API
WSDiscoveryEnabled true/false (default true) Determines if a job will
run to clean up stale
endpoint registrations
WSDiscoveryApplicationScope default Defines scope of all
gueries.

Client APl — App.config (affects remotely hosted Neuron ESB Parties)
Description
WSDiscoveryRemoteEndpoint true/false (default Determines whether
false) the remote party can
accept and respond to
probe requests. Must
be true if
WSDiscoveryEnabled is
set to true
WSDiscoveryEnabled true/false (default Determines whether or
true) not the remotely
hosted API will
broadcast WS-
Discovery
“hello”/”goodbye”
messages
WSDiscoveryApplicationScope default Defines scope of all
queries.
WSDiscoveryAnnouncementinterval 00:02:00 Only effective if
WSDiscoveryEnabled =
true. Determines
broadcast interval

http://www.neuronesb.com/

neuronXJesb

Neuron ESB Runtime Instance — EsbService.exe.config (affects configuration service and client

connectors)

Key |vaue | Description |

WSDiscoveryBroadcast true/false (default
true)

WSDiscoveryEnabled true/false (default
true)

WSDiscoveryApplicationScope default

WSDiscoveryAnnouncementinterval = 00:00:10

Neuron ESB Discovery Service — DiscoveryService.exe.config

Determines whether or
not the remotely
hosted API will
broadcast WS-
Discovery
“hello”/”goodbye”
messages

Determines whether
the services can accept
and respond to probe
requests.

Defines scope of all
gueries.

Only effective if
WSDiscoveryEnabled =
true. Determines
broadcast interval

Key (Value | Description |

WSDiscoveryManagedPort 9021

WSDiscoveryEnabled true/false (default
true)

WSDiscoveryApplicationScope default

WSDiscoveryAnnouncementinterval 00:00:10

WSDiscoveryManagedlpAddress

Represents the TCP
port used for Managed
probe requests using
the Neuron ESB
Discovery API
Determines whether
the discovery service
will broadcasts and
receive unicast probe
requests

Defines scope of all
gueries.

Only effective if
WSDiscoveryEnabled =
true. Determines
broadcast interval
Allows user to provide
an IP address that will
be broadcast to
discovery clients to be
used as unicast
address for probes. A
way to override the

http://www.neuronesb.com/

.

neuronxy

default use of netbios
names.
WSDiscoveryManagedUseHostName true/false (default Determines whether
false) the DNS host name or

local host name will be
used as the address for
WS-Discovery proxy.
Default is local host
name.

Neuron ESB implements Ad Hoc and Managed Mode WS-Discovery and provides an API that allows
users to query (probe) for endpoint information as well as monitor WS-Discovery broadcast events.
Managed mode probe requests are sent locally to the Neuron ESB Discovery Service which also serves as
a WS-Discovery proxy for Neuron ESB enabled services and endpoints. Managed mode requests are
made over TCP port 9021 by default. This port can be changed by modifying the
“WSDiscoveryManagedPort” setting in both the application (that is using the Neuron ESB Discovery API)
app.config file as well as the Neuron ESB Discovery Service app.config (i.e. DiscoveryService.exe.config).

WS-Discovery broadcasts and probe results have additional metadata associated with them, specific to
the endpoint. This metadata is exposed as typed information and can be retrieved using the Neuron ESB
Discovery API. The Neuron ESB Discovery APl namespace is Neuron.Esb.Discovery and is represented by
the DiscoveryClient class. The Neuron ESB Discovery APl sample below demonstrates several ways to
interact with Neuron ESB services using the WS-Discovery protocol. This same APl is built into the
Neuron ESB Test Client and the Neuron ESB Explorer, allowing users to auto discover Neuron ESB
runtime instances on the network in which to connect to.

private static void OfflineDiscovery(object sender, AnnouncementEventArgs e)

{
)
private static void OnlineDiscovery(object sender, AnnouncementEventArgs e)
{
)

static void Main(string[] args)

{

using (var discovery = new Neuron.Esb.Discovery.DiscoveryClient())

/// these events capture all online/offline WS-Discovery broadcasts made by all
/// Neuron ESB Runtime services such as Configuration and Peer Resolver.
discovery.OfflineNeuronWsDiscovery += discovery_OfflineNeuronWsDiscovery;
discovery.OnlineNeuronWsDiscovery += discovery_OnlineNeuronWsDiscovery;

// this sets all probes to use Managed mode versus Ad Hoc. Managed mode uses unicast probe
// requests over TCP
discovery.DiscoveryMode = Neuron.Esb.Discovery.DiscoveryModeEnum.Managed;

/// FindNeuronEndpoints() is a synchronous call that returns a

/// List<System.ServiceModel.Discovery.EndpointDiscoveryMetadata>

/// Each EndpointDiscoveryMetadata object contains an Extensions element containing Neuron

/// ESB metadata specific for each type of Neuron ESB endpoint

var resultsConfig = discovery.FindNeuronEndpoints(NeuronDisoveryTypeEnum.ServiceEndpoint,
3);

foreach (var endpoint in resultsConfig)

http://www.neuronesb.com/

neuron

.

3

Console.WriteLine("Endpoint address found :

+ endpoint.Address);

resultsConfig = discovery.FindNeuronEndpoints(NeuronDisoveryTypeEnum.ConfigurationService,

3);

foreach (var endpoint in resultsConfig)

/17
/17
/17
/17
/17
/17

Console.WriteLine("Endpoint address found :" + endpoint.Address);

these events capture the results of the Asynchronous FindRuntimeService call. They
provide access to the

EndpointDiscoveryMetadata as well as the Extensions as a strongly typed Neuron ESB
object. Each type of

Asynchronous call (one for Runtime Services, Service Endpoints and Remote Endpoints)
has its respective 'Completed' and 'Progress' event

discovery.FindRuntimeServiceCompletedNeuronWsDiscovery +=

discovery_FindCompletedNeuronWsDiscovery;

discovery.FindRuntimeServiceProgressNeuronWsDiscovery +=

/17
/17
/17
/17
/17
/17
/17

discovery_FindProgressNeuronWsDiscovery;

FindNeuronRuntimeServiceAsync() is an asynchronous call. Its
FindRuntimeServiceProgressNeuronWsDiscovery() event

provides access to the found endpoints as they are found on the network, while its
FindRuntimeServiceCompletedNeuronWsDiscovery()

event provides access to the final entire collection of endpoints found at the finish
of the duration of the call. by default, the duration is 20 seconds, but can be
controlled through an argument.

discovery.FindNeuronRuntimeServiceAsync(NeuronDisoveryTypeEnum.ConfigurationService,20);
Console.WriteLine("Press Enter to continue past waiting for async");

}
static void discovery_FindProgressNeuronWsDiscovery(object o, DiscoveryArgs e)
{
Console.WriteLine("FOUND IN PROGRESS:" + e.Address);
}
static void discovery_FindCompletedNeuronWsDiscovery(object
o,DiscoveryFindRuntimeServiceCompletedArgs e)
{
Console.WriteLine("COMPLETED:");
foreach (var ep in e.DiscoveryCollection)
if(ep.Error != null)
Console.WriteLine("ERROR RETURNED: " + ep.Error.ToString());
else
Console.WriteLine(" ADDRESS:" + ep.Address);
}
}
static void discovery_OnlineNeuronWsDiscovery(object o, DiscoveryArgs e)
{
Console.WriteLine("ON LINE:");
Console.WriteLine(" Type: " + e.Type.ToString());
Console.WriteLine(" Address: " + e.Address.ToString());
Console.WriteLine(" Configuration: " + e.Configuration.ToString());
Console.WriteLine(" Instance: " + e.InstanceName.ToString());
Console.WriteLine(" ActiveDeploymentGroup: " + e.ActiveDeploymentGroup.ToString());
if (e.Type == NeuronDisoveryTypeEnum.ConfigurationService)
onlineAddress = e.Address.ToString();
}
static void discovery_OfflineNeuronWsDiscovery(object o, DiscoveryArgs e)
{
Console.WriteLine("OFF LINE:");
Console.WriteLine(" Type: " + e.Type.ToString());
Console.WriteLine(" Address: " + e.Address.ToString());
Console.WriteLine(" Configuration: " + e.Configuration.ToString());

Console

WriteLine(" Instance: + e.InstanceName.ToString());

http://www.neuronesb.com/

neuronxy

Console.WriteLine(" ActiveDeploymentGroup: " + e.ActiveDeploymentGroup.ToString());

REST and WMI enabled Endpoint Health Monitoring

REST Interfaces

Neuron ESB 3.5 exposes much of its monitoring and server management functions through REST based
interfaces. These interfaces can be used to extend and build custom monitoring and management
solutions for Neuron ESB Deployments. The Neuron ESB 3.5 REST interfaces are hosted by the Neuron
ESB Discovery service (DiscoveryService.exe) which is installed with the Neuron ESB Server Runtime. The
default port (51002) for the REST interfaces is configurable through the Neuron ESB Discovery service’s
app.config. The default installation location of the Neuron ESB Discovery service is : “C:\Program Files
(x86)\Neudesic\Neuron ESB v3”.

The Neuron ESB REST interface documentation can be found at the default URL,
http://localhost:51002/help.

=)
[Neuron ESB REST Inte x W__

<« C [locathost:51002/help w . =

i Apps TE Neuron Buid Ser.. Y+ Yammer : Neude... [Transiate [% Englsh (7 Latest Headines 7 TrainingPeaks v3... » (] Other bookmarks

Neuron ESB REST Interface Documentation

Introduction

The Neuron ESB REST Interfaces can be used to develop custom user interfaces for Endpoint Health and Server/Instance management.

All featuses found in the Neuron ESB Explorer’s Server Management console (located by navigating to Deployment-~Manage->Servers) are exposed under the Runtime
section of the Documentation. The REST Interfaces can be used to view the status of and stop/start/configure any Neuron ESB Service Runtime Instance

Under the Deployment section of the D all deployment group can be returned for any Neuron ESB service Runtime Instance. This
information will contain the Neuron ESB Server names assigned to the group, whether that group is the active one on the local instance. its enabled state as well as other
deployment group related information.

All features found in the Neuron ESB Explorer's Endpoint Health console (located by navigating to Activity-=Health-~Endpoint Health) are exposed under the
EndpointHealth section of the Documentation. These mterfaces can be used to view and monitor all endpoint health data as well as start'stop and clear statistics of any
endpoint being monitored

Runtime
APL Description
GET neuronesb/apy/v1/runtime Retums an array of all the Neuron ESB Service Instances mstalled on the local server. Each
Instance also has an associated Server name that its mstalled on. By default this will always be the
local server. Pattemn® neuronesb/api/vL/runtime
GET b v1/runtime/{mstance Retumns the configuration for the Neuron ESB Service Instance. The ESBServiceConfiguration
object returned represents the information exposed by the "Configure Server” dialog within the
Neuron ESB Explorer UL Pattern: neuronesb/apy'v1/runtime/default64
GET b v1/untime/ {mstance} /status Retums the status (EsbService) object for the Neuron ESB Service Instance. The status
information 1s an EsbService object that provides information such as whether the Neuron ESB
Service Instance is running. its name. its boostrap and configuration port and zone. as well as 1ts
actual running (service process) status. Pattern: neuronesb/apy/v 1/runtime/default64/status
POST neuronesb/api‘v | untime/ {instance} /state Used to start or stop a specific Neuron ESB Service Instance on the local server. Pattern:

neuronesb/api/v1/untime/default64/state

Figure 30 Neuron ESB REST Documentation Web Site — The Neuron ESB REST interface documentation is hosted on the local
Neuron ESB server.

The REST interfaces are self-documenting, providing detailed instructions on how to call each specific
function and are separated into the following categories:

e Runtime

e Deployment

e Endpoint Health
e Activity

http://www.neuronesb.com/
http://localhost:51002/help

neuronxy

Runtime

All features found in the Neuron ESB Explorer's Server Management console (located by navigating to
Deployment->Manage->Servers) are exposed under the Runtime section of the Documentation. The
REST Interfaces can be used to view the status of and stop/start/reconfigure any Neuron ESB Service
Runtime Instance. Several interfaces are exposed including:

GET
e neuronesb/api/vl/runtime
e neuronesb/api/vl/runtime/{instance}
e neuronesb/api/vl/runtime/{instance}/status

e neuronesb/api/vl/runtime/{instance}/state
e neuronesb/api/vl/runtime/{instance}/config

Using these interfaces, users can find all instances of the Neuron ESB Runtime on a specific server,
retrieve their respective solution configuration, and then use the Deployment REST interface to
determine exactly what servers the solution is deployed to and how it is configured across the various
environments.

http://www.neuronesb.com/

neuronXJesb

€ - C' |[3 chrome-extension://hgmloofddffdnphfgcellkdfbfbjeloo/RestClient.html#RequestPlace:history/3 - =
! Apps TG Neuron Buid Ser... ¥: Yammer : Neude... [Translate [English (7 Latest Headines T TrainingPeaks v3... Advanced Rest C... » [J Other bookmarks
Advanced Rest Last used: Wednesday, 2014 October 29 10:25:27 UTC-7 & save open -
Client
P hitp 5100 pifv/runtir
Request ®GET OPOST OPUT O PATCH O DELETE ©HEAD O OPTIONS © Other
Socket Raw Form Headers
Projects
Saved
History
Settings A
b Clear Send
Rate this Status 2000K @ Loading time: 14 ms
application ¥ &
Donate i) Request User-Agent: Mozilla/s.0 (Windows NT 6.1; WOWE4) AppleWehKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.111 Safari/537.36
= headers Content-Type: textplain; charset=uti-8
5 Accept: */*
& Accept-Encoding: gzip,deflate sdch
Accept-Language: en-US.en g=08
‘Cookie: auth=Z3VIc3Q6Z3VIc3Q%30; m=34e2;
Response Transfer-Encoding: chunked
headers ‘Content-Type: application/json; charset=utf-8
Server: Microsoft-HTTPAPI2.0
Date: Wed, 05 Nov 2014 06:25:06 GMT

Raw JSON Response

Copy to clipboard Save as file

configurationPath: “E:_NeuronwebCast\Configurations\DemoSolution™
deploymentGroup: "Development”
instanceName: "default64” .
zone: "Enterprise”
wcfTracingEnabled: false
dotNetMaxWorkerThreads: 500
dotNetMinWorkerThreads: 5@
dotNetMaxIOThreads: 1@e@
dotNetMinIOThreads: 1@e
tThreadPoolsize: false
1a¥imu1LagFileii:é: 184857660
minimumDiskSpaceThreshold: 18485768
logFileSchedule: "Daily”

logFolderCleanupSchedule: 18
savedHistoryCleanupSchedule: @
tracingEnabled: true
canWriteToDiagnosticSection: true
tracelevelSetting: "Warning”
masterControlServicePort: 50004

-zones: [1]
—e: {
key: "Enterprise”
—value: [4]
@: "Development"
1: "Production”
2: QA"
3: “Staging”
}
1
“ 3

Figure 31 Neuron ESB REST Runtime — Demonstrates calling one of the Runtime REST interfaces from the Google REST client to
retrieve the configuration for a specific Neuron ESB Runtime instance.

Deployment

All deployment group information can be returned for any Neuron ESB service Runtime Instance. This
information will contain the Neuron ESB Server names assigned to the group, whether that group is the
active one on the local instance, its enabled state as well as other deployment group related
information.

A single interface is exposed:

http://www.neuronesb.com/

neuronxy

GET
e neuronesb/api/vl/deployment/{instance}

Endpoint Health

All features found in the Neuron ESB Explorer's Endpoint Health console (located by navigating to
Activity->Health->Endpoint Health) are exposed under the Endpoint Health section of the
Documentation. These interfaces can be used to view and monitor all endpoint health data as well as
start/stop and clear statistics of any endpoint being monitored such as a Topic, Adapter Endpoint,
Service Endpoint, Availability Group and Workflow Endpoint.

Two interfaces are exposed:

GET
e neuronesb/api/vl/endpointhealth/{instance}

POST
e neuronesb/api/vl/endpointhealth/{instance}/{id}/state

An example of using these together would be to first retrieve the ID of the endpoint to Stop or Start
using the GET interface. Once the ID is retrieved it could be passed to the PUT interface to either Stop or
Start the endpoint.

== =
Advanced Rest Client / x |}
<« C' | [chrome-extension:/fhgmloofddffdnphfgcellkdfbfbjeloo/RestClient.html#RequestPlace:history/10 97 & =
! Apps TE Neuron Buid Ser... ¥¢ Yammer : Neude.. [9 Translate [English [J Latest Headines TP TrainingPeaks v3... » [Other bookmarks
Advanced Rest Last used- Wednesday, 2014 October 29 13:28:28 UTC-7 & Save Open
Client
¥ hitp 100 1, 4344818f-deea-4250-b04b-d4aaasaT0050/state
Request GET ®POST OPUT O PATCH O DELETE © HEAD © OPTIONS O Other
Socket Raw Form Headers
Projects
Saved
History
Settings 4
About Raw Form Files (0) Payload
Rate this "stop"
application v
Donate
4
2ppRcaicnficon 7 set "Content-Type" header fo overwrite this value.
Clear Send
Status 200 OK Loading time: 136 ms
Request User-Agent: Mozilla/5.0 (Windows NT 6.1, WOWE4) AppleWebKit537 36 (KHTML, like Gecko) Chrome/38.0.2125.111 Safari/537 36
headers Origin: chrome-
Content-Type: applicationjson
Accept: */*
Accept-Encoding: gzip.deflate
Accept-Language: en-US enq=0.8
Cookie: auth=23VIc306Z3VIc3Q%3D; m=34e2
Respanse Content.Length: 0
headers Server: Microsof-HTTPAPI2.0
Date: Wed, 05 Nov 2014 06:45:38 GMT
Raw Response
Word unwrap Copy to clipboard Save as file -
»

Figure 32 Neuron ESB REST Endpoint Health — Demonstrates calling one of the Runtime REST interfaces from the Google REST
client to stop a specific Topic by using the ID of the Topic.

http://www.neuronesb.com/

neuronxy

Activity
The Activity REST interface provides users the ability to query Neuron ESB and retrieve any message
logged to the Failed Message Audit table by its message id.

A single interface is exposed:

GET
e neuronesb/api/vl/Activity/{instance}/{messageid}

For example, a user could use Windows Management Instrumentation (WMI) to monitor Neuron ESB for
Failed Messages and, alternatively use REST to retrieve the message body if the message was larger than
1MB in size. Once the message body is retrieved, it could be published back to Neuron ESB using the
client API for further processing or to generate notifications.

The first step: setup the monitoring of the WMI event:

static void Main()

{
try
{
var managementScope = new ManagementScope("\\\\.\\root\\Neudesic_ESB_v@");
managementScope.Connect();
var eventQuery = new WqlEventQuery("FailedMessageEvent");
var watcher = new ManagementEventWatcher (managementScope, eventQuery);
watcher.EventArrived += FailedMessage;
watcher.Start();
Console.WriteLine("Listening for events. Press Enter to exit.");
Console.ReadLine();
watcher.Stop();
}
catch (Exception ex)
{
Console.Error.WriteLine(ex);
}
}

The second step: capture the FailedMessage event:

static void FailedMessage(object sender, EventArrivedEventArgs e)

{

string action = e.NewEvent["Action"] as string;

DateTime failureDate = ManagementDateTimeConverter.ToDateTime(e.NewEvent["ActionDate"]
as string);

string failureType = e.NewEvent["FailureType"] as string;

string failureDetail = e.NewEvent["FailureDetail"] as string;

string messageBody = e.NewEvent['"Message"] as string;

string session = e.NewEvent["Session"] as string;

string topic = e.NewEvent["Topic"] as string;

string party = e.NewEvent["PartyId"] as string;

string instanceName = e.NewEvent["EsbInstanceName"] as string;

string messageIld = e.NewEvent["MessageId"] as string;

bool largeMsg = (bool)e.NewEvent["LargeMessage"];

Console.WriteLine(messageBody);

var message = string.Format(

http://www.neuronesb.com/

neuronxy

CultureInfo.InvariantCulture,

"Failed message on instance = {0} topic = {1} party = {2} DateTime = {3}
Failure Type = {4} Failure Detail = {5} -- Message ID = {6}",

instanceName,

topic,

party,

failureDate.ToString(),

failureType,

failureDetail,

messageld);

Console.WritelLine(message);
b
The last step: include the conditional logic to call the Neuron ESB Rest interface if the message body was

too large for the event to return:

static void FailedMessage(object sender, EventArrivedEventArgs e)

{

string action = e.NewEvent["Action"] as string;

DateTime failureDate = ManagementDateTimeConverter.ToDateTime(e.NewEvent["ActionDate"]
as string);

string failureType = e.NewEvent["FailureType"] as string;

string failureDetail = e.NewEvent["FailureDetail"] as string;

string messageBody = e.NewEvent["Message"] as string;

string session = e.NewEvent["Session"] as string;

string topic = e.NewEvent["Topic"] as string;

string party = e.NewEvent["PartyId"] as string;

string instanceName = e.NewEvent["EsbInstanceName"] as string;

string messageld = e.NewEvent["MessageId"] as string;

bool largeMsg = (bool)e.NewEvent["LargeMessage"];

if (lLargeMsg)
{

var url = string.Format(CultureInfo.InvariantCulture,
"http://localhost:51002/neuronesb/api/vi/activity/{e}/{1}",
instanceName, messageld);

HttpWebRequest webRequest = (HttpWebRequest)WebRequest.Create(url);
webRequest.Method = "GET";

HttpWebResponse webResponse = (HttplWebResponse)webRequest.GetResponse();
using (Stream responseStream = webResponse.GetResponseStream())

using (StreamReader sr = new StreamReader(responseStream))

messageBody = sr.ReadToEnd();

}

Console.WriteLine(messageBody);

var message = string.Format(
CultureInfo.InvariantCulture,
"Failed message on instance = {0} topic = {1} party = {2} DateTime = {3}
Failure Type = {4} Failure Detail = {5} -- Message ID = {6}",
instanceName,
topic,
party,
failureDate.ToString(),
failureType,
failureDetail,
messageld);

Console.WritelLine(message);

http://www.neuronesb.com/

neuronxy

Windows Management Instrumentation (WMI)

Neuron ESB 3.5 introduces a new WMI event that allows users to monitor state changes that occur in
any Adapter or Service Endpoint (Client or Service Connector). Historically, users would monitor these
state changes through the Neuron ESB Explorer’s Endpoint Health. However, WMI allows users to build
extended monitoring solutions without the need to reference Neuron ESB specific assemblies.

For example, using the WMI event, a solution could be developed to detect when an endpoint goes
offline. When it does, a notification could be sent or, the Neuron ESB REST interface could be used to
automate the restart of the endpoint.

The following states are reported by the WMI event. These are the same state events reported within
Endpoint Health.

public enum ServiceState

{
StateUninitialized = 0,
StateStarting = 1,
StateStarted = 2,
StateStopping = 3,
StateStopped = 4,
StateFailed = 5,
StatePaused = 6,
StateDisabled = 7,
StateOutOfService = 8,

Initializing and monitoring the event (EndpointStateChangeEvent) is similar to that of the Neuron ESB
FailedMessageEvent WMI event:

static void Main()

{
try
{
var managementScope = new ManagementScope("\\\\.\\root\\Neudesic_ESB v@");
managementScope.Connect();
var eventEndpointQuery = new WglEventQuery("EndpointStateChangeEvent");
var watcher = new ManagementEventWatcher(managementScope, eventEndpointQuery);
watcher.EventArrived += EndpointChanged;
watcher.Start();
Console.WritelLine("Listening for events. Press Enter to exit.");
Console.ReadLine();
watcher.Stop();
catch (Exception ex)
{
Console.Error.WriteLine(ex);
}
¥

Capturing the EndpointChanged event:

static void EndpointChanged(object sender, EventArrivedEventArgs e)

{

string zone = e.NewEvent["Zone"] as string;
DateTime eventDate = ManagementDateTimeConverter.ToDateTime(e.NewEvent["Datetime"] as string);
string type = e.NewEvent["Type"] as string;

http://www.neuronesb.com/

P

neuronxy

string name = e.NewEvent["Name"] as string;

string state = e.NewEvent["State"] as string;

string hostName = e.NewEvent["Hostname"] as string;

string instanceName = e.NewEvent["EsbInstanceName"] as string;
string application = e.NewEvent["Application"] as string;

string deploymentGroup = e.NewEvent["DeploymentGroup"] as string;
string endpointId = e.NewEvent["Id"] as string;

string info = e.NewEvent["Message"] as string;

var message = string.Format(
CultureInfo.InvariantCulture,
"Name={0}, Endpoint Type={1}, State={2}, Instance={3}, Zone={4}, Machine={5},
Application={6} , DeploymentGroup={7}, Info={8}, DateTime={9}",
name,
type,
state,
instanceName,
zone,
hostName,
application,
deploymentGroup,
info,
eventDate.ToString());

Console.WriteLine(message);

As seen in the example above, a number of properties are exposed by the WMI event, including Type
and Message. The Type property can be one of 3 possible values:

e C(ClientConnector
e ServiceConnector
e AdapterEndpoint

The Message property will only be populated if a failure occurred with the endpoint. In that case, the
Message property will contain the entire System.Exception message.

Using the Type property, the original WMI query could be modified to only monitor endpoints of a
specific type using the Condition property:

var eventEndpointQuery = new WglEventQuery("EndpointStateChangeEvent");

eventEndpointQuery.Condition = "Type = 'AdapterEndpoint'";

NetSuite and Dynamics CRM 2013 Online

NetSuite Adapter

This is a new adapter included in the 3.5 release. This subscription adapter supports one-way as well as
solicit response mode. Users can perform any operation available in the SuiteTalk Web Services Platform
provided by NetSuite. They can send inserts, updates or deletes into NetSuite, or perform gets, getList
and search requests against NetSuite. This adapter also supports meta-data harvesting. Users can
browse the operations exposed by NetSuite and elect to generate Xml Schemas and sample Xml
Messages for the various operations.

http://www.neuronesb.com/

neuronXJesb

-
" Neuron ES8 Explorer

File View Tools Help

[| &~ | ® Runing - (o) BB | Configure Server | CategoryFiter [<]

‘You are working offiine, C:\euron'AdaptersNetSuite\NetSuiteESE
w
=l ® Tasks
Look For: Find

3 Import & Service
=l # Connection Methods

MNew Copy () Delete | (2] Hide Detail

| Adapter Mode Description

| ‘ Name ‘ Cateaory ‘ Zone

4! Adapter Registration
NetSuiteEndpoint Enterprise | NetSuiteAdapter icit Response

g Service Bindings
ij Service Behaviars
5 s Endpoints

g Service Endpaints
%@ Adapter Endpoints
{'IB Workflow Endpoints

=l = Policies
Editing Endpoint NetSuiteEndpoint [0

& Service Polides @App\y @Cancel Bindings Adapter Bindings

& Adapter Policies General Properties

4 General
NetSuite Service URL https://webservices.netsuite. com/services MNetSuitePort_2013_2
MNetSuite Account ID TSTDRV5555555
Username demo.user@demosystems.com
@ Messaging Password LT TTY Y
Role 3
ﬁ Repository 4 Metadata Generation
Retrieve Metadata
@ Security Username
Username for NetSuite login
Ry
._!yy Processes
g Deployment 1lof1
skﬁviw Al # A B € D E F 6 H I 1 K L M N O P QR 5 T U V W X Y Z

Figure 33 Neuron ESB NetSuite Adapter Endpoint Configuration — Once the NetSuite Adapter is registered, any number of

\

Adapter Endpoints can be configured using the adapter.
The Meta data generation wizard can be accessed through the “Retrieve Metadata” property of the

adapter endpoint.

http://www.neuronesb.com/

.

neuronxy

' ™y
% Schema Generation Wizard ﬁ
Select a cateqgory: P Available Contact operations: y
= NetSuiteAdapter Mame Description i~
[=]-Entities L .
. Contact add add: No description availableContact: No descr...
- Customer addList addList: Mo description availableContact: No d... |E
- CustomerStatus attach attach: Mo description availableContact: No de...
- Emplayee delete delete: Mo description availableContact: Mo de... —
.. EntityGroup deletelist deletelist: Mo description availableContact: Mo...
- Partner detach detach: Mo description availableContact: Mo de...
.. Job get get: Mo description availableContact: No descri...
- JobType getDeleted getDeleted: No description availableContact: M...
- JobStatus getlist getlist: Mo description availableContact: Mo de... =
- Vendor
[+ Activities Remove
- Communications Chosen operations:
[+]- Transactions
[Items Category Name Description
[+~ Support " , -
- Website Entities/Contact/0 add add: Mo description. ..
[#- Lists
[#- Other Lists
[#- Marketing
[+ File Cabinet
[#]- Custom Lists
[+~ Custom Record Types
[Import] [Close

Figure 34 Neuron ESB Meta Data Browser — Users can browse all the available entities and operations exposed by the NetSuite
application.

Operations can be selected by clicking the Add button. After operations are selected, the Import button
will display the selected operations, allowing users to edit their properties and to optionally choose to
generate sample Xml messages. The Finish button will store all the generated Xml Schemas and
messages in the Neuron Explorer Repository.

' ™y
% Schemas to Import M
The following schemas will be imported into the Repository. To modify the settings, click on the row.
Operation Mame “ersion Category Diescription Overwrite
| General : This Contact schema was |]
Core_Schema core 1.0 General This NetSuite schema =
Core_Schema coreTypes 1.0 General This Net_Sluitelschlem_a) =
Core_Schema fauliTypes 1.0 General This Net_Sluitelschlem_a) =
Core_Schema relationshipTypes 1.0 General This Net_Sluitelschlem_a) =
Core_Schema commaon 1.0 General This NetSuite schema =
Core_Schema commen Types 1.0 General This Net_S_uite_sch_em_a) =
[] Generate XML Samples ’ Cancel] ’ Finizh]
i y

Figure 35 Neuron ESB Schema Import — Users can import NetSuite operation XML Schemas as well as generate sample Xml/
messages to send to the adapter.

http://www.neuronesb.com/

neuronxy

Microsoft Dynamics CRM 2013 Online

The Microsoft Dynamics CRM 2013 Online event based workflow adapter compliments the existing
Microsoft Dynamics CRM 2013 subscription adapter and provides similar functionality that exists in the
existing Neuron ESB Dynamics CRM 2013 On Premise workflow adapter.

Using Neuron ESB, Microsoft Dynamics CRM 2013 Online administrators can easily capture events
through the Dynamics CRM 2013 Process Designer and configure them to be forwarded to Neuron ESB.
Processes in Microsoft Dynamics CRM 2013 are based on Windows Workflow Foundation. By leveraging
the Microsoft Dynamics CRM 2013 Online process engine, Neuron can provide more options for
business rule creation, while offering a greater breadth of event publication options.

The Neuron ESB Microsoft Dynamics CRM 2013 Online workflow adapter extends Microsoft Dynamics
CRM 2013, enabling it to send event notifications to Neuron ESB. Some of the features include:

e Send entities to Neuron ESB hosted services.

e Send dynamic entities to Neuron ESB hosted services.

e Send customized XML with data from related entities to Neuron ESB hosted services.
e Execute fetch XML queries and send the results to Neuron ESB hosted services.

= Process: Send Contact to Neuron - - Internet o=
Aig https://neuroncrmdeme.crm.dynamics.com/sfa/workflow/edit.aspxid= %7b440AS0A6-CTB6-4A33-8786- ABCEOD2FBCE3 %47 de &
I“ e) save ana Close @ | € actvate | [5] convertto 2 rea-time workfiow | =33 Snow Dependencies i3 Actions + @Hep -

Process: Send Contact to Neuron ‘Working on solution: Default Solution

E-E‘ ‘ 2, Information

General Administration Notes

4 Common
Z. Information ~ Hide Process Properties e
2 Audit History

4 Process Sessions ProcessNome* [senocomazonewor | ety Contact
[E] Process Sessions Activate As Process & Category Workfiow

Available to Ry
wailable to Run Options for Automatic Processes

Scope Organization [v]
Start wher: Record is created

Run this workFiow in the background {recommendec]
[] As an on-demand process

As a child process
. Record status changes

Record is assigned

[V Automatically deiete completed workFiow jobs (to save disk space] 7] Record filds change

[Record s deleted

Workflow Job Retention

[S3Add Step - | Salnsert - X Delete th's step

Stage

Check Condition
s
| ‘Wait Condition
Create Record
Update Record
Assign Record
Send Emai
Start Child Workfiow
Change Status
Stop Workflow
Neuron {Services) » Advanced Send (WS)
Entity Send (WS)
Field Send (WS}
v
Status: Draft
https://neuroncrmdemo.crm.d com/sfa/workflowy edit.aspxTid= %7b440AS0A6 -CTB6-1A33-8786-ABCEOD2FEC53%7 d H®100% ~

Figure 36 Microsoft Dynamics CRM 2013 Online Process Designer — The Neuron ESB Microsoft Dynamics CRM Online Workflow
adapter installs 3 activities that can be used to auto publish entities and related information directly to Neuron ESB hosted
services.

http://www.neuronesb.com/

neuronxy

The Neuron ESB Microsoft Dynamics CRM 2013 Online workflow adapter must be installed in sandboxed
isolation mode on either a Microsoft Dynamics CRM Online instance or Office 365 instance. The plugin
can also be used in sandboxed isolation mode in on-premises versions of Microsoft Dynamics CRM 2013.

Neuron ESB Explorer UX

With the release of Neuron ESB 3.5, users no longer are presented with a “Connect” dialog when they
first launch the Neuron ESB Explorer. In previous versions (as shown in the image below), users were
presented with a dialog where they could either connect to a Neuron ESB runtime instance, open a
solution offline, or create a new solution.

X
R
neurongIESE

Neuron ESB, Enterprise Edition, Version 3.0.0.30. Copyright (C) 2006-2012 Neudesic LLC

—Work Modes C ct Options
Online Server Name: IIocalhost
G Connect 3 <
\ﬁ Connect to Neuron ESB Service LEENERRE |51001
——1 Dynamic Updating s lDEF AULT :J
Offline
X
1 open x|
. Open Ne
A Deploy M
Starting Neuron ESB 'DEFAULT instance...
Create QI%
F Create b
_D Depoy |

Cancel I

Figure 37 Neuron ESB 3.1 Connect Dialog — In previous versions of Neuron ESB users could be presented with the Connect dialog
anytime they needed to either connect to, open or create a new solution.

However, using the Connect dialog was the only way a user could work with any solution. There was no
File menu options that allowed users to directly open or create solutions. This could impede productivity
for users who needed to switch between several solutions.

In this latest release, when users launch the Neuron ESB Explorer executable (NeuronExplorer.exe), they
are presented with the Neuron ESB Explorer IDE rather than the Connect dialog as in previous versions.
The Neuron ESB Explorer IDE includes new File menu options such as “New”, “Open” and “Connect...”,
effectively replacing the functionality of the “Open”, “Connect” and “Create” buttons that existed in the
pre-3.5 Connect dialog.

http://www.neuronesb.com/

neuron&Jesb

% Neuron ESB Explorer

oigD an existng solution or connect 0.3 soution.

1 E:\WebCast\Solutions\DemoSolution
2 E:\...\Neuron 3.5\Accumulator Workflow
3 E\...\Correlated Basic Workflow

Figure 38 Neuron ESB 3.5 Explorer IDE — Neuron ESB 3.5 has moved the Connect dialog functionality to the File menu with the
addition of “New”, “Open” and “Connect...” menu items. The Explorer also implements an MRU (Most Recently Used) menu.

Additionally, a “Most Recently Used” menu list has been implemented so that users no longer have to
search for solutions that they had previously opened.

When connecting to either local or remote instances of the Neuron ESB runtime, users can select
“Connect...” from the File menu, launching a new “Connect” dialog as shown in the figure below.

http://www.neuronesb.com/

.

neuronxy

Connect to Neuron ESB il

neuron \?_,

MNeuron ESB, Enterprise Edition, Version 3.5.0.322. Copyright (C) 2006-2014 Neudesic LLC

— Connection Method

(~ WS-Discovery

Machine I Zone Instance | Deployment Group I Configuration

mwasznicky01 Enterprise DEFALLTE4 Development E:\Weuron¥TrainingMeuron

| i
(® Override

Neuron Server: IbcalhOGt

Discovery Port: |5 1001

Instance: | ﬂ

—Security Credentials (Optional)

Username: I

Password: |

Domain: |

Connect Cancel

Figure 39 Neuron ESB 3.5 Connect dialog — Allows users to connect to any runtime instance either by specifying the server, or by
using WS-Discovery.

The new Neuron ESB 3.5 Connect dialog is used exclusively to connect to local or remote instance of the
Neuron ESB runtime. By default, the Override option is selected and uses the same Neuron ESB
Discovery service that was used in previous versions, providing a list of all running Neuron ESB instances
on a machine. However, this required users to know what machines had Neuron ESB runtime instances
installed. Also, the user would never know if the Neuron ESB runtime selected was started until a
connect attempt was made.

This same Connect dialog is also exposed through the Neuron ESB Test Client through the Tools ->
Connection Settings menu.

Starting with Neuron ESB 3.5, Neuron ESB runtime instances have been enabled with WS-Discovery.
Assuming local networks support WS-Discovery broadcasts, users can select the WS-Discovery option on

http://www.neuronesb.com/

neuronxy

the Connect dialog. When selected, WS-Discovery will be used to find all the Neuron ESB runtime
instances started on the network. Users can double click on any instance to connect to it.

Lastly, although not necessarily related to the UX experience, when users install Neuron ESB 3.5, the
local runtime instance is no longer configured with the Sample Solution. If the Neuron ESB runtime
instance is started from the Neuron ESB Explorer’s toolbar menu, the following dialog will be presented
to the user

Neuron ESB Startup Failure il

There is no Solution currently configured for the Neuron ESB runtime service.
Please select 'Configure Server' from the toolbar to assign a Solution for the
Neuron EB runtime to load.

Figure 40 Neuron ESB 3.5 Startup warning — Notification to user that solution is required to be configured for local runtime

before starting runtime.

Neuron ESB Database changes

Neuron ESB 3.5 Workflow requires the configuration of the Neuron ESB Database. The Neuron ESB
Database can be easily created using the Neuron ESB Explorer. However, we made several changes to
support Workflow, the need to clean up tracking information and allow users to regularly purge and
archive Neuron ESB Audit and Workflow Tracking data.

Database Schema Changes

In the Neuron ESB 3.5 release, we changed how we manage and update our database schemas. In the
past, we released a single database script that would create the entire database, and with each release
of Neuron ESB, we would release updates if necessary. For users that were several versions behind, it
became confusing on how to upgrade your database from one version to the next.

With Neuron ESB 3.5, we have introduced a new database schema management scheme that will make
it easier to create new databases and upgrade existing databases to stay in sync with Neuron releases.
The new database scheme will also make it easier for the product team to release bug fixes and new
features with future releases.

The new database scheme uses a series of database scripts based on a single version number. Each
script is named using the following form:

<4-digit-version-number>_<description-of-change>.sql

http://www.neuronesb.com/

neuronxy

With the Neuron ESB 3.5 release, we have walked back through our database history from prior releases
and produced the following database scripts:

e 0001_CreateNeuronDB.sql

e 0002_UpdateTo2_6.sql

e (0003 _UpdateTo3_0.sql

e (0004 UpdateTo3_1.sql

e 0005_UpdateTo3_2.sql

e (0006 UpdateTo3 3.sql

e (0007_UpdateTo3_1 0.sql

e (0008 UpdateTo3_1 405.sql

e (0009 UpdateTo3 5 0.sql
The current database version number for the Neuron ESB 3.5 release is version number 9. In the new
database scheme, the first database script will create the basic Neuron ESB database corresponding to
the Neuron ESB 2.5 release, and each additional script will apply the incremental changes that were
made to the database with each Neuron software release. Moving forward with future releases, we will
add new features and fix bugs to the database by releasing new incremental update scripts to the
database, leaving the existing scripts in a stable, frozen state.

The advantages to this new version numbering scheme are:
e Less confusion on how to create or update a database. Users simply run the scripts in numerical
order.
e We can make it easier to automatically upgrade your database for users.
Please note: Upgrading an existing database has risks including data loss of existing data. Only upgrade
an existing database after backing up your existing data. This is important should any data loss or errors
occur during the upgrade so that you can restore your database to a known operational state.

Upgrading an Existing Database
The upgrade process for databases is now much easier, and is also automated. There are two ways to
create or upgrade a Neuron ESB database:

e Using Neuron ESB Explorer

e Using a new PowerShell script

Using Neuron ESB Explorer

The process for creating or updating a database is the same in Neuron Explorer for the 3.5 release as it
has been in the past. However, there is a new feature that will allow the Neuron ESB Explorer to
upgrade an existing database to the latest version.

If you configure a database that is incompatible with the installed version of Neuron ESB, the Neuron
ESB Explorer will now prompt you to upgrade your database. If you choose to upgrade your database,
the Neuron ESB Explorer will determine the current database version and will apply the incremental
updates that are necessary to upgrade your database to the latest version.

http://www.neuronesb.com/

neuronxy

Using PowerShell
The PowerShell script uses the sqlps PowerShell module installed by Microsoft SQL Server. This script
will not work if the sqlps PowerShell module is not installed on the server.

You do not need to import sqlps prior to running the PowerShell script. The PowerShell script will detect
if it is available, and if not, will import the sqlps module automatically.

The Neuron ESB 3.5 release includes a new PowerShell script that you can use to create or delete an
existing Neuron ESB database. The PowerShell script will not create the actual database. The database
must exist before running the PowerShell script. But the PowerShell script will create the database
structures needed by Neuron ESB in an empty database. Given an empty database or an existing Neuron
ESB database, follow these steps to create or update your database:

e QOpen a PowerShell console.

e Use the Set-Location cmdlet to change the directory to the installation directory for Neuron

ESB.

> Set-Location “C:\Program Files\Neudesic\Neuron ESB v3\”
e Execute the PowerShell script, providing the correct values for the parameters (line breaks are
for illustrative purposes and should not be entered into the PowerShell console):

> \PowerShell\UpdateNeuronESBDatabase.psl

—neuronEsblinstallPath “C:\Program Files\Neudesic\Neuron ESB v3”

-serverinstance “<server-name>"

-database “Test”
The serverlnstance parameter can be a dot (“.”) for the local machine, or can be a machine name. If you
have installed a named instance of SQL Server, you would specify that as well. For example, to install the
database objects in a SQL Express instance, you would use .\SQLEXPRESS for the value of
the serverlnstance parameter.

The UpdateNeuronESBDatabase.ps1 PowerShell script will examine the database to determine whether
the database is empty or contains an existing Neuron ESB database. If the database is an existing
database, the UpdateNeuronESBDatabase.ps1 script will determine the version number for the
database and will apply the update scripts necessary to bring your database up to date with the
currently installed release of Neuron ESB.

Workflow Tracking Cleanup Job

Starting with the Neuron ESB 3.5 release, the Neuron ESB database needs a SQL Server Agent job to
purge workflow tracking records marked for deletion. When creating a database through Neuron
Explorer, an attempt will be made to create and schedule the job. If the user has insufficient database
permissions for the creation of the job to succeed, then you will need to modify and run the script
manually.

http://www.neuronesb.com/

neuronxy

The job creation script is called CreateJob_PurgeWorkflowTracking.sql and can be found in the Sql
folder under the default Neuron ESB installation folder (ex: C:\Program Files\Neudesic\Neuron ESB
v3\Sql). Open the script file and replace the ${DatabaseName} placeholder. By default the script enables
the job, sets the job's owner as "sa" and schedules the job to execute every 10 minutes. Modify these
values as needed then execute the script. You will see a new job in SQL Server Management Studio.
Make sure to start the SQL Server Agent service. NOTE: If you are saving your script changes specify a
different filename so that Neuron Explorer will have access to the unchanged
Createlob_PurgeWorkflowTracking.sql file.

Archive and Purge Neuron DB Job

Neuron ESB 3.5 introduces the ability to automate the purging and archiving of the Neuron ESB
database. For example, when Neuron ESB Auditing is used, over time the auditing tables will grow,
consuming more disk space. Additionally, when using Workflow, Workflow tracking will produce
increasing amounts of data in their respective tables. Overtime, there will be a need to delete older data
to maintain performance. Perhaps as well, based on an organization’s data retention policy, there will
be a need to archive older data to an offline database or store.

There is a now a SQL Server Agent job, Createlob_PurgeArchiveNeuron.sql, located in the Neuron ESB
Sql folder under the default Neuron ESB installation folder (ex: "C:\Program Files\Neudesic\Neuron ESB

v3\Sgl\ ").

Open the script file and replace the following parameters with the values according to your
organization’s data purge and archive policies:

e @DatabaseName - The Neuron ESB database which you want to purge and backup
e @LoginName - The username which has ability to run the Job
e @FolderName - The folder where you want to store Neuron ESB database backup. The

backup database name will be in the format of
“SERVERNAME_DATABASENAME_Mmm_dd_yyyy_hh_mm.bak”

o @NumberOfDays - This variable is set at a default of 7. when you run your job with this
default setting, any data that is older than 7 days will be moved to the
backup folder (for archiving) and then purged from the current
Neuron ESB database

Once the modifications are done, the script can be executed in the SQL Server Management Studio to
create the SQL Server Agent Job. Once created, users can schedule the job to run during off hours.

Log4Net Neuron ESB Provider

Prior to Neuron ESB 3.1, Neuron used two facilities for outputting diagnostic information and events at
runtime: writing directly to the Windows Event Log, and using the classes in the System.Diagnostics
namespace to write to trace files. We heard from customers that they were looking for other logging
features to integrate with what the customers were using, with log4net being the most common. In

http://www.neuronesb.com/

P

neuronxy

Neuron ESB 3.1, we introduced log4net into the Neuron ESB SDK and programs not only to meet our
customer requests, but to use the configurability and extensibility of log4net's logging features.

After receiving feedback from customers, we extended the logging facility in Neuron ESB 3.5 to provide
a pluggable provider-based model for logging. This allows customers to integrate the logging platform of
their choice into the Neuron ESB SDK in order to allow the Neuron ESB SDK components to output to the
same locations or logging services that customers are using for their software.

Note that this pluggable model is only for use with customer solutions that are linking against the
Neuron ESB SDK. The Neuron ESB applications such as the Neuron ESB Messaging and Workflow runtime
services will continue to use logdnet for their logging output.

Source code for a sample logging provider can be found on Github:
https://github.com/neuronesb/log4net-provider

http://www.neuronesb.com/
https://github.com/neuronesb/log4net-provider

