
Neuron ESB 3.5 Cumulative Update (CU) 4

Released!

Cumulative Update 4 is the culmination of the great customer feedback we've received since the original
release of Neuron ESB 3.5. We use updates as an opportunity to deliver brand new capabilities to the
Neuron ESB community, enabling the development of more complex, yet easy to manage solutions on
the platform.

If you’re using Neuron ESB 3.5 today, please download the Cumulative Update 4 patch to update your
existing installation. Current customers can obtain either the Patch or the full installation from the
Neuron ESB Support website. If you are new to Neuron ESB, you can download the full installation from
the Neuron ESB website. All the details of this release can be found in the Knowledgebase Article KB354-
0531151.

Neuron ESB’s CU4 feature pack provides over 60 new features, enhancements, and connectors. The
numerous enhancements include Swagger/API management, workflow, connectors and OAUTH
integration. CU4’s host of new connectors for cloud-based tools and services include CertainSafe,
NetSuite, Dropbox, Amazon, Marketo, Twilio, Apple Push Notifications and more.

Many more capabilities are included is this update, some of which include:

 OAuth Support
 Flat File Parser
 Swagger Support for REST APIs
 HTTP (REST) Endpoint Configuration
 Rabbit MQ Topics (revamped)
 JSON Templates & Data Mapping
 New Workflow Activities
 New Monitoring & Service Broker Capabilities
 11 New Connectors
 100+ Product Fixes

All the changes included in the CU4 update can be found in the Neuron ESB Change Log which gets
installed with Neuron ESB. In this blog post, I thought I would elaborate on some (not all) of the new
enhancements and features we’ve added to the update.

Adapters/Connectors
The Neuron ESB CU4 includes a number of new adapters/connectors. Adapters are key piece of

capability in the world of an integration broker. They serve as the bridge to and from the bus between

applications, databases, transports and protocols. The completeness of “what” you ship as well as how

easy it is for others to build their own adapters is critical in accelerating the development of any

solution. Not only is Neuron ESB hands down one of the easiest adapter frameworks to learn in the

industry, it also has pre built adapters for most commodity transports, queuing technologies, databases

http://support.neuronesb.com/
http://pages3.neudesic.com/Neuron-Free-Trial.html
http://support.neuronesb.com/index.php?/default_import/Knowledgebase/Article/View/68/15/cumulative-update-4-for-neuron-esb-35-kb354-0531151
http://support.neuronesb.com/index.php?/default_import/Knowledgebase/Article/View/68/15/cumulative-update-4-for-neuron-esb-35-kb354-0531151
http://support.neuronesb.com/downloads/NeuronChangeLog.pdf

and on premise/cloud applications. However, we continue to deliver a more complete and richer set of

connector with every release. This update is no exception.

Certainsafe

Neuron ESB’s CertainSafe Adapter is the culmination of a partnership between the two companies. The

adapter enhances your efforts to securely store and transmit encrypted secret data while leaving

mundane information in clear text form. It does so by simplifying the steps you employ to interact with

your CertainSafe Digital Vault from your Neuron ESB based integration infrastructure. Together Neuron

ESB and CertainSafe enable automated data security for databases, files, processes, messages and API

communications.

The Neuron ESB CertainSafe adapter functions in a Solicit/Response pattern in that the adapter listens

for messages published to the bus based on its Topic. Those messages can contain data bound for

secure storage and encryption by the CertainSafe service or tokens that map to previously secured data.

The response from the CertainSafe Digital Vault service is a new token in the former case and the

returned data in the latter. For more information about CertainSafe can be found here:

https://certainsafe.com/.

More information can be found here: http://www.neuronesb.com/resources/?article

Zuora

Zuora is an enterprise software company that designs and sells SaaS applications for companies with a

subscription business model. The new Neuron ESB Zuora adapter enables you to easily embed any or all

of Zuora’s commerce, billing and finance Software as a Service products into your own subscription-

based services. The adapter turns your Neuron ESB integration infrastructure and all of your connected

services into relationship business management dynamos that provide you the information you need to

design, iterate and understand your subscription revenue streams.

The Neuron Zuora adapter functions as either a publish or subscribe endpoint to the bus. Using

Publisher or Subscriber model, the Zuora adapter enables connectivity with the Zuora Rest API, through

which businesses can perform operations such as managing subscriptions from a web storefront,

retrieving user information, and synchronizing catalogs with ERP systems. Using the Zuora adapter users

can easily configure integration with popular third party applications and systems such as NetSuite,

Dynamics CRM and SalesForce.

More information can be found here: http://www.neuronesb.com/resources/?article

Marketo

Marketing in the brave new services world is different. Marketo excels at Lead Management, email,

consumer, customer base and mobile marketing processes for your service based products. The Neuron

ESB Marketo adapter enables you to connect all of Marketo’s Software as a Service product through

your Neuron ESB integration infrastructure to your own services and backend systems. Modernizing

your own marketing efforts couldn’t be easier than with Marketo and the Neuron ESB Marketo adapter.

The Neuron ESB Marketo adapter can function as either a publishing or subscribing endpoint to the bus.

Using the subscriber model, the Marketo adapter enables connectivity with the Marketo API, allowing

users to interface with marketing data through API calls to add/update leads, manage campaigns, run

analytics, and track opportunities. Marketo can also Interact directly with the Neuron ESB Marketo

https://certainsafe.com/
http://www.neuronesb.com/resources/?article
http://www.neuronesb.com/resources/?article

Adapter via its WebHook feature (i.e. Publish mode). Using the WebHook feature, Marketo can send a

Notification to Neuron ESB. Examples would be Customer Inactivity, Duplicate prevention and Sending

Reminders for meetings prior to demo.

The Neuron ESB Marketo adapter allows your businesses to integrate Marketo with existing ERP,

eCommerce, and CRM applications such as NetSuite, Salesforce and Dynamics CRM.

More information can be found here: http://www.neuronesb.com/resources/?article

Twilio

Twilio’s popularity as a communications Infrastructure as a Service provider makes it an easy choice for

any customer interaction scenario that includes in-app VOIP/Telephony or text/picture messaging. The

new Neuron ESB Twilio adapter and your Neuron ESB integration infrastructure enables you to quickly

add these feature sets to your own services and products.

The Adapter provides easy accessibility to Twilio’s REST API and it supports both publish and subscribe

modes. Solicit/response and request/reply patterns are also supported. This enables you to build

customer communication scenarios that include you own internal processes in the communications

patterns that your customers expect. For example, you can fire off processes that are initiated from

customer phone calls or text messages or respond to any event with direct phone calls or texts out to

your customers. Neuron ESB and Twilio turn your business systems into customer retention tools.

More information can be found here: http://www.neuronesb.com/resources/?article

Apple Push Notification Service

The Apple Push Notification Service adapter allows your Neuron ESB solutions to interact with iOS

mobile devices (iPhone, iPad). Using the adapter, Neuron ESB solutions can send alerts and notifications

to iOS devices, set application icon badges, and play sounds. The adapter can also be used to receive

notifications from the Apple Feedback Service when messages cannot be delivered to iOS devices. This is

typically a result of the user unsubscribing from receiving notifications for an application.

More information can be found here: http://www.neuronesb.com/resources/?article

Amazon Web Services Simple Queueing Service

Amazon Web Services is the leading cloud hosting provider, and the SQS service lets Neuron ESB

integrate with solutions running in the AWS cloud. The adapter supports publishing messages to an SQS

queue or receiving messages from an SQS queue. The adapter can be used to pass work to batch

processes running in EC2 or Lambda, or to publish events and notifications from your AWS applications

to other services that are integrated using Neuron ESB.

More information can be found here: http://www.neuronesb.com/resources/?article

Dropbox

Dropbox is a leader in cloud storage and now you can use Neuron ESB to upload files to Dropbox or

download files from Dropbox. The Neuron ESB Dropbox adapter wraps the Dropbox REST API and

exposes several operations around file management in Dropbox accounts. You can use the Dropbox

adapter to archive messages safely to Dropbox for backup, syndicate documents to subscriber accounts,

or import documents from subscriber accounts. You can also use the Dropbox adapter to copy files,

move or rename files, delete files, or create folders in user Dropbox accounts.

http://www.neuronesb.com/resources/?article
http://www.neuronesb.com/resources/?article
http://www.neuronesb.com/resources/?article
http://www.neuronesb.com/resources/?article

More information can be found here: http://www.neuronesb.com/resources/?article

Rabbit MQ

The Neuron ESB Rabbit MQ Adapter allows Neuron ESB to interact with Rabbit MQ in a variety of ways,

with configurable levels of Transaction support and Quality of Service. Organizations can use the

adapter to monitor Rabbit MQ Topics or Queues for new messages, forwarding those (i.e. publishing) to

a Neuron ESB Topic where other subscribing parties (e.g. Adapter, Service or Workflow Endpoints) can

receive the information. Conversely, the adapter can also be used to forward information published to

or generated by Neuron ESB to either a Rabbit MQ Queue or Topic, essentially making Rabbit MQ a

Neuron ESB subscriber. Both types of Rabbit MQ Transactions are supported (e.g. Transaction and

Publish Confirms) as are Virtual Hosts, SSL and all the latest features of Rabbit MQ.

More information can be found here: http://www.neuronesb.com/resources/?article

Active Directory

Neuron ESB’s Active Directory (AD) Adapter simplifies efforts to make an organization’s AD Server(s)

part of a Neuron ESB-based integration infrastructure. Using the Neuron ESB Active Directory adapter,

organizations can incorporate AD into their Business Process automation and management solutions to

automate tasks involved in new hire and user/group provisioning scenarios. The Neuron ESB Active

Directory adapter can function as either a publishing or subscribing endpoint to the bus. In Publish

mode, the adapter can monitor an organization’s AD server for specific changes/events (i.e. password

change, deleted user, etc.), publish those changes to bus where they would be routed to all interested

subscribing users or Business Processes/Workflows. In Query mode, the AD server can be queried for

information, or existing users and groups can be updated, added or deleted. Users and Groups can also

be enabled/disabled and passwords can be reset.

More information can be found here: http://www.neuronesb.com/resources/?article

Neuron ESB Microsoft Project Connector for NetSuite

With NetSuite's cloud-based project management solution, stakeholders can see, monitor and manage

project status anytime, anywhere. By delivering complete visibility and control, NetSuite's project

management solution gives you real-time access to all of your project information. The result is a

significantly improved project completion record, more satisfied clients and reduced non-billable work.

Microsoft Project makes project management easy. With tools designed specifically for team members,

project managers, executives and the PMO, it enables collaboration from virtually anywhere with the

right tools for any role.

The Neuron ESB Microsoft Project Connector for NetSuite enables you to sync projects and resources

across both toolsets through your Neuron ESB integration infrastructure. When you’ve got NetSuite as

your project management system of record and Microsoft Project’s role focused editions in the hands of

your stakeholders, synchronized with Neuron ESB, your business will provide instant access to critical

project data anytime, anywhere for anyone.

More information can be found here: http://www.neuronesb.com/why-neuron-esb/netsuite-

integration/

http://www.neuronesb.com/resources/?article
http://www.neuronesb.com/resources/?article
http://www.neuronesb.com/resources/?article
http://www.neuronesb.com/why-neuron-esb/netsuite-integration/
http://www.neuronesb.com/why-neuron-esb/netsuite-integration/

Dynamics CRM WEB API

The Neuron ESB Dynamics CRM Web API Adapter provides direct access to Microsoft Dynamics CRM

2016 Web API. Using this adapter, organizations can easily integrate their business applications such as

SAP, NetSuite or Marketo with Dynamics CRM 2016, both on-premises and online. The adapter utilizes

the new Azure Active Directory/ADFS OAuth Provider to manage access to Dynamics CRM. This adapter

operates in both subscribe as well as solicit/response (or query) mode. Organizations can use the

adapter to query for data, create, update, retrieve and delete entities and execute CRM Functions and

Actions. The adapter can be used to access the entire Dynamics CRM Web API. When developing

applications that utilize this adapter, developers will be able to use the Adapter Metadata Generation

Wizard to generate JSON samples that describe the request and/or response documents that are

exchanged with Dynamics CRM. Developers can also use the new Http Utility process step in our

process designer to very easily define the calls to Dynamics CRM.

More information can be found here: http://www.neuronesb.com/resources/?article

OAuth Providers
The Neuron ESB 3.5 CU4 release introduces OAuth support for authorizing web service invocations using

Service Connectors (i.e. HTTP/REST service endpoints) and supported Adapters. Using OAuth, Neuron

ESB can obtain access tokens that can be passed to REST services to authorize protected resource

invocations. In CU4, OAuth bearer tokens based on RFC 6750 are supported.

Neuron ESB supports obtaining OAuth access tokens using the following authorization services:

 Amazon

 Azure Active Directory/ADFS

 Dropbox

 Facebook

 Foursquare

 GitHub

 Google

 Instagram

 LinkedIn

 Microsoft Live

 SoundCloud

 SourceForge

 Tumblr

 Twitter

 Yahoo!

Registering an OAuth Provider

Configuring an OAuth provider for web services is very simple, but will require you to coordinate with

the authorization service. Most authorization services will require you to register your application with

them in order to obtain an identifier and secret value that is used to identify your application and

authorize your application to act on behalf of you or your application’s users.

http://www.neuronesb.com/resources/?article
https://tools.ietf.org/html/rfc6750

To begin, navigate to the Security tab in Neuron ESB Explorer and select the OAuth Providers node in the

tree. Create a new OAuth provider and enter in a name. At the bottom of the details view is a list of

providers. Select the authorization service provider that you want to use to obtain an access token for

your application to use.

You will next need to register your application with the authorization service. For example, to use

Facebook to obtain an access token to authorize access to remote web services, you will need to create

an application at the Facebook Developer website.

https://developer.facebook.com/

After creating your application, you will be able to access the client identifier and client secret. These

values are used to identify your application to the authorization service and to authenticate the access

tokens and codes from the authorization service. When you have these values, you should register them

in the OAuth provider’s properties in Neuron Explorer:

You will typically also need to register a callback URI with the authorization service when you register

your application. The callback URI is used as part of the OAuth 2.0 protocol to redirect the user back to

your application after signing into the authorization service. You can use any URL. During the OAuth

authentication process, Neuron ESB’s OAuth providers will use the URI to determine when the

authorization process has completed successfully in order to obtain the access token from the

authorization service for the OAuth provider.

After your OAuth provider is configured, you can test the provider within Neuron ESB Explorer using the

web-based flows. By clicking on the Test button in the toolbar for the detail view, a web browser will be

opened and you will be able to validate that the client identifier, secret value, and redirect URI are

correct by authenticating with the authorization service and obtaining an access token.

Using an OAuth Provider in a Service Connector

Once an OAuth provider has been configured, it can be used by a RESTful service connector to invoke

web services from a remote web service. All that is necessary is to associate your OAuth provider with

the service connector using a new drop-down list that has been added to the service connector detail

tab:

Once the service connector has been configured with an OAuth provider, the service connector will use

the OAuth provider’s access token to invoke the remote web service. The access token will be passed to

the remote web service as a bearer token using RFC 6750.

Flat File Parser
In Neuron ESB CU4 there is a flat file parser that can be used to convert single record format flat files

into XML. The supported flat files must have the following attributes:

 Fixed-width or delimited. The following delimiters are supported:

o Comma

o Tab

o Vertical Bar (otherwise known as “Pipe-Delimited”)

o Semicolon

o Custom string (any combination of characters)

 All records in the flat file must conform to the same definition. The only exception to this are

leading records and trailing records which can be ignored.

Using the Flat File Parser

Process Definition

The flat file parser is included as a Business Process step in Neuron ESB Explorer. To use the flat file

parser, create a new Business Process (or use an existing one) and drag the Flat File Process step from

the Process Steps toolbox onto the Business Process Designer:

Creating a Flat File Definition

The flat file parser includes a wizard that will assist users in creating the flat file definition. The flat file

definition cannot be created without using the wizard. The Flat File Wizard requires a sample flat file in

order to create the definition. This sample flat file can either be imported into the new Neuron ESB Text

Repository located by navigating to Repository->Documents->Text Documents within the Neuron ESB

Explorer or, it can be retrieved directly from the file system.

1. To start the wizard, right-click on the Flat File Parser step in the process designer and select Flat

File Wizard…

2. On the Welcome page, click Next:

3. On the File Type page, select the type of file to process – Fixed Width or Delimited. If Delimited

is selected, the appropriate delimiter must also be supplied. If something other than the

provided options are needed, select Custom String and enter the character(s) to be used as a

delimiter. Click Next:

If Fixed Width is selected, continue with step 4. If Delimited is selected, skip to step 8.

4. On the Fixed-Width Flat File page, either select a sample flat file from the repository or the file

system. To select a sample from the repository, select the Repository radio button and select

from one of the files listed. To select a file from the repository it must be imported before

running the wizard. To select a sample from the file system, select the File System radio button

and click the ellipsis button to browse for a file from the file system. Some flat files include

column header names in the first line. If your flat file includes column headers, check the box

for First Row Contains Column Names. Also, if you want the Flat File Parser to ignore any of the

leading or trailing rows, indicate how many of each row to ignore:

5. Once you have selected a fixed-width document the preview pane will display the first 10 rows:

6. When parsing a fixed-width file you need to set the column breaks. To set a column break, click

anywhere in the preview pane and a vertical line will appear. Click the line again and it will

disappear. Note – you don’t have to click on the ruler above the preview pane, just click inside

the preview pane:

7. After selecting all the column breaks, click Next. Skip to step 10.

8. If you selected Delimited in step 3, the Comma-Delimited Flat File page will appear. On this

page, either select a sample flat file from the repository or the file system. To select a sample

from the repository, select the Repository radio button and select from one of the files listed.

To select a file from the repository it must be imported before running the wizard. To select a

sample from the file system, select the File System radio button and click the ellipsis button to

browse for a file from the file system. Some flat files include column header names in the first

line. If your flat file includes column headers, check the box for First Row Contains Column

Names. Also, if you want the Flat File Parser to ignore any of the leading or trailing rows,

indicate how many of each row to ignore:

9. Unlike the preview pane for fixed-width files you do not need to set column breaks. This file

includes headers in the first row. Click Next:

1. When you check the “First Row Contains Column Names” checkbox, the column names are

automatically populated. However, you can still change these names on the Column Details

page. After confirming the column details, click Finish to close the wizard.

After finishing the wizard, the flat file definition is stored as a process property. You can re-run the

wizard and see the same values you selected the previous time you ran it.

To test the Flat File Parser, use the Process Tester and use the same sample data you used when running

the Wizard.

Swagger Support for REST APIs
Swagger is a simple yet powerful representation of any RESTful API. With one of the largest ecosystems

of API tooling, thousands of developers are supporting Swagger in almost every modern programming

language and deployment environment. With a Swagger-enabled API, organizations get interactive

documentation, client SDK generation and discoverability.

It’s natural that the Neuron ESB Client Connector (i.e. SOAP/REST API services hosted by Neuron ESB)

should also create Swagger-enabled APIs. Starting with Neuron ESB 3.5 CU4 the Client Connector does

exactly that.

Creating Swagger Documentation

The CU4 release includes a new section in the Neuron ESB Explorer Repository called Swagger

Documents (see figure 1). This is where Swagger API documentation can be stored and managed. Users

can create a new Swagger document in the Repository by either copying or entering the content of an

existing Swagger document or by importing an existing Swagger document from any External URI.

(Figure 1)

Once a Swagger document is stored in the Repository, the document will automatically be hosted by

Neuron ESB at http://localhost:51003/docs/<newlycreatedswaggerdoc>. All Neuron ESB managed

Swagger Repository documents are hosted on Port 51003. However, the port can be changed by editing

the value of the “SwaggerSelfHostingUrl” key in the appSettings section of the

discoveryservice.exe.config configuration file located in the “C:\Program Files (x86)\Neudesic\Neuron

ESB v3” folder.

To create Swagger documents from scratch, the Swagger Editor (http://editor.swagger.io), an online

tool, can be used as shown in Figure 2 below.

(Figure 2)

http://localhost:51003/docs/%3cnewlycreatedswaggerdoc
http://editor.swagger.io/

Using Swagger Documents

In order to assign a Swagger document to the Neuron ESB Client Connector, navigate to the Client

Connector Tab then select the Metadata Button, which will present you a “Configure Client Connector

Metadata” dialog box. Here either an external Swagger document URI can be provided or a static

Swagger document located in the “Swagger Documents” section of the Neuron Explorer ESB Repository

can be chosen as shown in Figure 3.

(Figure 3)

Once a Swagger document is selected from the dropdown selection, or an external Document URI is

provided, the Client connector will have Swagger documentation associated with its endpoint. Pointing a

web browser to the Client Connector URL along with /help will expose the Swagger documentation.

For example, if the Neuron ESB Client Connector URL was http://localhost:9192/Users, then the

http://localhost:9192/Users/Help URL will redirect users to the Swagger documentation (see Figure 4).

http://localhost:9192/Users
http://localhost:9192/Users/Help

(Figure 4)

Implementing and Testing

Once a Swagger document (like the one created and shown above) is assigned to the Neuron ESB Client

Connector, the implementation for the call either has to already exist or be created. The following

example demonstrates how we can create a simple implementation that can be tested by users

browsing to the Client Connector’s Swagger document.

Using the Neuron ESB Business Process Designer a simple Process can be created that contains the

implementation of the “GetUser” API call as shown in the Figure 5 below. The Business Process is then

attached to the OnPublish event of the Neuron ESB Publisher assigned to the Client Connector.

(Figure 5)

The actual implementation for “GetUser is simple and encapsulated within the “Get” C# Process Step

shown in Figure 5. The “Get” Process Step expands into the Neuron ESB C# Code Editor as shown in

Figure 6. The Code Editor contains C# code to mock users in a list, convert the list to a JSON object,

setting the Neuron ESB Message body.

(Figure 6)

Once implemented, this Neuron ESB Client Connector API can be tested directly from the Swagger

document as can be seen below in Figure 7. Clicking the “Try it out!” button will execute the GetUser API

call, returning the Response message.

(Figure 7)

HTTP Utility, JSON and Swagger
Neuron ESB includes a Service Broker that enables organizations to deploy Neuron ESB as a Service

Gateway, providing mediation, security, hosting and a number of other services. Service Connectors are

essentially registrations within Neuron ESB that point to existing services hosted within an organization,

by a partner or in a cloud domain. These services, which can be either SOAP or REST (HTTP) based, can

be called either through the Neuron ESB messaging system via a Topic subscription or by using a Service

Endpoint Workflow Activity and Process Step. The latter two options can be used with either the Neuron

ESB Workflow Designer or the existing Business Process Designer and allows a user to directly call any

Service Connector without the need to publish a request to a Topic, eliminating all pub/sub overhead.

These are commonly used to create service aggregation and composition solutions.

For calling REST (HTTP) based Service Connectors (endpoints), it’s not uncommon that various pieces of

information need to be provided at runtime according to the REST specification. For example, the

Method name (e.g. GET, POST, PUT, PATCH, etc.) must be provided. HTTP Headers usually need to be

provided (e.g. Content Type, Authorization, Accept, etc.) as well as Query string or URL parameters.

In previous versions of Neuron ESB, this information could be provided by using a C# Code Editor within

either the Business Process Designer or Workflow Designer directly preceding the Service Endpoint

activity as depicted below:

Opening the C# Code Editor allowed developers to provide the information they needed to initialize the

service call at runtime by primarily using the HTTP object of the Neuron ESB Message as shown below.

The information used to initialize these HTTP elements could come from the existing Neuron ESB

Message, Neuron ESB Message or context properties or even Neuron ESB Environmental Variables that

may have different values at runtime depending on the runtime environment they are deployed to. The

example below shows how Query string parameters could be set in a Code Editor in the Workflow

Designer.

HTTP (REST) Endpoint Configuration

Rather than requiring that developers use C# to set HTTP properties, CU4 introduces a new tool, the

“HTTP Utility”. This utility can be used within the Business Process or Workflow Designer to do more

advanced levels of HTTP configuration. The HTTP Utility is exposed as both a Process Step and Workflow

Activity that can be dragged onto either designer. Users can select “Configure” from the context menu

to display the main configuration screen of the HTTP Utility as shown below:

For users familiar with tools like “Postman” and the REST client of Chrome, the HTTP Utility will look very

similar and they will find it just as easy to configure. The HTTP Utility has built in intelligence and allows

users to use Neuron ESB Environmental Variables, Neuron ESB Message properties, Context properties

and literal values to configure any Value, Message body or URL as shown below:

Valid HTTP Header options and methods are displayed as drop down boxes, while possible values for the

selected HTTP Header “key” also appear as context sensitive drop downs.

Alternatively, Neuron ESB Environmental Variables, properties (context, message, etc.), message body

and literals can be used by selecting from the available list. Environmental variables are preceded by the

“$”, whereas all others are preceded by “#” as shown below.

The literal values that appear in the list (i.e. by pressing CTRL + SPACE) that can be used are:

 {#DateTime(local)} - Adds the local date time value with following format: "yyyyMMddHHmmss"

 {#DateTime(local), ddmmyyyyhhmmss } - Adds the local date time value using the provided

format specifier

 {#DateTime(Utc)} - Adds the UTC date time value with following format: "yyyyMMddHHmmss"

 {#DateTime(Utc),ddmmyyyyhhmmss} - Adds the UTC date time value using the provided format

specifier

 {#IMF-fixdate} – Adds the RFC 7231 Date/Time Format e.g. 'Tue, 15 Nov 1994 08:12:31 GMT'"

 {#GUID} – Adds a unique GUID string value (e.g. 00000000-0000-0000-0000-000000000000)

Values that can be used to access either some part of the body or a custom message property of the ESB

Message are:

 {#<custom>.<property>} – Returns custom message property i.e.

context.data.GetProperty(“myPrefix”, “MyProperty”)

 {#JObject.<property>} – Returns the property from the JSON dynamic object property from the

current Neuron ESB Message.

Besides the Method drop down box and the URL text box, the HTTP Utility has 3 primary tabs: Headers,

Body and URL Parameters. The Headers tab allows users to specify any HTTP or custom key/value pairs

that will appear as HTTP Headers in the final REST service call. A good example of an HTTP Header could

be either the Content Type or Authorization header. The Body tab allows users to specify how the body

should be encoded and sent to the service as shown below:

Using the settings, Neuron ESB will ensure the proper HTTP Content Type and data are appropriately set

and encoded if necessary. Users have additional options like clearing out the underlying Neuron ESB

Message body if either Form Body or Form Url Encoded options are chosen.

The URL Parameters tab allows users to enter key/value pairs that will be serialized as URL parameters

for the service call. The HTTP Utility removes the need for developers to use C# to set the required HTTP

properties for any service call. In the example below, a Salesforce authentication call is made where all

the values are using Neuron ESB Environmental Variables, allowing the values to be specific to the actual

runtime environment the solution is deployed to:

Swagger Integration

Over the years, Swagger has become a common documentation format for REST (HTTP) based services.

As such, the CU4 release introduces a number of new JSON/Swagger features, one of which is the ability

to configure the HTTP Utility using Swagger.

For example, CU4 ships a Marketo adapter which is accompanied by its respective Swagger

documentation. The Marketo Swagger documentation, as well as any Swagger document registered

within the new Neuron ESB Swagger Repository, can be accessed directly within the “Use Swagger

document” section of the HTTP Utility.

Swagger documents can be imported in the Neuron ESB Swagger Repository by navigating to

Repository->Service Descriptions->Swagger Documents within the Neuron Explorer.

By expanding the “Use Swagger document” section, the Document and Operations dropdown fields will

be visible and populated using existing Swagger documents in the Repository. These can be selected to

auto configure the HTTP Utility. If a Swagger document doesn’t exist, one can be imported directly

within the UI by selecting the “Import Swagger…” option from the Document dropdown and providing

the URL of the Swagger document.

JSON Templates and Data Mapping

JSON has become more prominently used by developers and integrators as organizations move to using

more REST (HTTP) based services. CU4 provides new repositories and access methods that make using

JSON much easier than in previous releases of Neuron ESB.

In CU4, the ToJObject() has been added to the Neuron ESB Message object. This will return the Neuron

ESB Message body as a Newtonsoft.Json.Linq.JObject. This is accessible within either a Workflow or

Business Process. It allows users to use .NET’s dynamic object keyword to access data correctly using a

hierarchical syntax. For example, a sample json document like the following:

{

 "message": "Success. Lead Created",

 "data": {

 "SalesOwnerAccountUserId": "118527",

 "AccountUserId": "89027"

 }

}

Could then be accessed directly in a Code Editor using C# as shown below:

dynamic jo = context.Data.ToJObject();

var ownerID = jo.data.SalesOwnerAccountUserId;

This makes it much easier for developers to access and modify json data within a Business Process or

Workflow.

To complement this, a new JSON Repository for storing JSON documents and templates has been

introduced which can be located by navigating to Repository->Documents->Json Documents within the

Neuron ESB Explorer. Sample JSON documents or templates can be stored and accessed at runtime

within any of the Business Process or Workflow environments. Integrators can use JSON templates as a

quick, simple way to facilitate data mapping/transformations. Json templates are nothing more than

Json messages that have format specifiers inserted for their values. For example, if the following

template was stored in the repository and named, “AccountUpdateRequest”:

{

 "salesRepAccountUserID":{0},

 "auditAccountUserID":{1}

}

It could then be retrieved in any Business Process or Workflow by using the “JsonFormatString” property

of the repository document:

var accountUpdateTemplate =

 configuration.JsonDocs["AccountUpdateRequest"].JsonFormatString;

Once the template is retrieved, data mapping can be as easy as this:

Context.Data.Text = string.Format(accountUpdateTemplate,

 (string)jo.data.SalesOwnerAccountUserId??string.Empty,

 (string)jo.data.accountUserID??string.Empty);

Port Sharing
One of Neuron ESB’s scalability features is the ability to install multiple instances of the Neuron ESB

Runtime on a single server. Each runtime instance can be configured as either a 32 or 64-bit process,

capable of running side by side. Each instance of the runtime can load an independent Neuron ESB

Configuration store (solution). This allows organizations to easily partition business solutions to run on a

single server and scale across multiple servers.

However, one of the configuration challenges has always been TCP port configuration at the solution

level. Neuron ESB uses TCP ports to communicate between its internal subsystems e.g. Auditing,

Control, Configuration, Master and TCP Publishing Services. Remote Neuron ESB Parties also use TCP to

connect to the Neuron ESB Server; to retrieve their respective configuration, receive updates and to

regularly send reporting information. The TCP Port configuration for a solution can be found on the

Ports tab of the Enterprise Zone by navigating to Deployment->Settings->Zones within the Neuron

Explorer.

Prior to CU4, if multiple instances were installed on a single server, users would need to ensure that the

ports configured for each solution assigned to those instances were unique. For example, if the

Bootstrap Service was configured in one solution (instance A) to run on port 50000, then the other

solution (instance B) would need to be configured to use a different port. If they weren’t, then one of

the solutions would fail to start, reporting a Port in use exception.

The unique port requirement made it more challenging, operationally, to manage the solutions as more

runtime instances were installed on a single server. To resolve the need to change and manage port

conflicts between solutions we are introducing Port Sharing in the 3.5 CU4 release. Port Sharing can

significantly reduce the operational and management overhead when installing and running multiple

instances of the Neuron ESB Runtime on the same machine.

Port Sharing is easily enabled by doing 2 things

1. Enable and then set for automatic startup the “Net.TCP Port Sharing Service” in the service

control manager. Start the service. For more information: https://msdn.microsoft.com/en-

us/library/ms733925(v=vs.110).aspx

2. Enable the new Port Sharing option located on the Port tab of the Enterprise Zone within the

Neuron ESB Explorer as shown below:

https://msdn.microsoft.com/en-us/library/ms733925(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms733925(v=vs.110).aspx

Once the Port Sharing option is enabled, the solution must be saved and the runtime instance assigned

to it restarted.

Organizations using the Neuron ESB Party API directly in their .NET applications will be required to

append the name of the runtime instance to the service address url. For example, previously the service

address would look similar to following if the runtime instance name was “default64”:

<configuration>
 <appSettings>
 <add key="esbZone" value="Enterprise"/>
 <add key="esbServiceAddress" value="net.tcp://localhost:50000"/>
 <add key="esbServiceIdentity" value=""/>
 </appSettings>

If Port Sharing is enabled, the service address would now look like this:

<configuration>
 <appSettings>
 <add key="esbZone" value="Enterprise"/>
 <add key="esbServiceAddress" value="net.tcp://localhost:50000/default64"/>
 <add key="esbServiceIdentity" value=""/>
 </appSettings>

Lastly, the other implication to consider is performance tuning. When Port Sharing is disabled,

performance tuning for the Neuron ESB internal subsystems is controlled by modifying the “Internal

Service Binding Settings” located on the Server tab of the Enterprise Zone as shown below. These

parameters are typically modified to reflect the number of CPUs/Cores balanced against the load being

placed on the services.

However, when Port Sharing is enabled, the SMSvcHost.exe, (which hosts the Net.TCP Port Sharing

Service) manages the TCP sockets on Neuron ESB’s behalf. This means that performance tuning will be

controlled by the binding settings within the SMSvcHost.exe.config file. For more information regarding

the configuration of tuning parameters and the creation of the config file:

https://msdn.microsoft.com/en-us/library/aa702669(v=vs.110).aspx .

The new Port Sharing option will greatly simplify the creation, deployment and management of multiple

Neuron ESB runtime instances and solutions on individual servers!

Rabbit MQ Topics
Neuron ESB provides a hierarchical, Topic-based publish and subscribe model to mediate the routing of

messages between Parties (Publishers and Subscribers that are hostable in .NET applications), Adapter,

Service and Workflow Endpoints. Topic based messaging can be a great way of abstracting endpoints

from one another. In essence, all endpoints become publishers and subscribers with one never having to

have knowledge of the other. This allows organizations to easily change and modify existing solutions

without interrupting the processing of other endpoints.

Neuron ESB is unique in that the Quality of Service and underlying Transport of Topics can be changed to

better accommodate and more closely align with the business requirements of specific use cases. For

example, durable, guaranteed, and reliable messaging as well as in-memory routing of messages, can be

provided by simply changing the Transport property of a Neuron ESB Topic as show below:

https://msdn.microsoft.com/en-us/library/aa702669(v=vs.110).aspx

When changes are made, the underlying Party API is self-aware of changes made at the server and auto

configures itself to accommodate the Topic configuration changes, even when deployed and hosted on

remote machines. This means that developers using the Party API do not need to know, nor do they

directly have to work with or individually program the underlying transport configuration, transaction or

QOS requirements. This is all controlled and managed at the server level. For the user who needs to

publish messages, the code is as simple as this:

 // Create an instance of a publisher
 using (Publisher publisher = new Publisher("MyPublisher"))
 {
 // catch any exceptions that may occur while connecting
 // to each individual topic
 PartyConnectExceptions exceptions = publisher.Connect();
 if (exceptions.Count < 1)
 {
 publisher.Send("MyTopic", "<Test>My Request</Test>");
 }
 else
 {
 // log the errors
 }
 }

Neuron ESB 3.5 provides a number of Transports that users can select for Topics including Named Pipes,

TCP, Peer, Rabbit MQ and MSMQ. Some provide durable, guaranteed, and reliable messaging such as

MSMQ and Rabbit MQ. In the CU4 release, the Rabbit MQ Transport for Topics has been completely

refactored to provide not only better performance, new manageability and more flexibility, but also

better fault tolerance, reliability and security.

Updated Version Support

In the CU4 release, the first notable change is that our support for Rabbit MQ has been upgraded to

support Rabbit MQ version 3.5.6 and Erlang 18.1. Using the Neuron ESB installer, users can optionally

select to install these during the setup process, or can download these from the locations list in our

readme.html file or directly from the Rabbit MQ web site.

Configuration

The Rabbit MQ configuration for a Deployment Group can be found on the RabbitMQ tab of a

Deployment Group by navigating to Deployment->Environments->Deployment Groups within the

Neuron Explorer.

When registering Rabbit MQ servers for a Neuron ESB Deployment Group the following information is

required:

Property Description
Server Name of the Rabbit MQ Server

Port Port of the Rabbit MQ Server. -1 will use the default Rabbit MQ port of 5672

Mgmt Port Port of the Rabbit MQ Management Portal. Default is 15672

vHost The configured vHost of the Rabbit MQ Server. Default value is “/”

Username Username to access Rabbit MQ.

Password Password to access Rabbit MQ

Although some properties may seem fairly straight forward, others may not. For instance, the “Mgmt

Port” represents the port of the Rabbit MQ Management Plugin. Neuron ESB requires this to be installed

and configured for every Rabbit MQ server registered as it uses it to query for the health and message

throughput rates which appear in both Endpoint Health and the Rabbit MQ Message Management

console in the Neuron ESB Explorer. More information regarding the Rabbit MQ Management Plugin

and how to install it can be found here: https://www.rabbitmq.com/management.html

As of Rabbit MQ version 3.3.3, the default username “Guest” cannot be used against the Rabbit MQ

management plugin if the server name is anything other than “Localhost”. It is always recommended to

create a dedicated username and password in Rabbit MQ that can be used by Neuron ESB.

High Availability and Failover

Neuron ESB allows users to enter multiple instances of Rabbit MQ servers to support the mirroring of

the underlying queues that Neuron ESB will use for the Publishers and Subscribers created within the

Neuron ESB Explorer. Rabbit MQ uses mirroring, rather than Windows Failover Clustering, to achieve

High Availability of messages. More information regarding Rabbit MQ HA and its configuration can be

found here: https://www.rabbitmq.com/ha.html

When multiple servers are configured, at runtime Neuron will use the first server it can connect to as

the primary message server. If for any reason that server becomes unavailable, Neuron ESB will

automatically failover over the next server in the list until it can find one that it can establish a

connection against. If a connection can be established, publish and subscribe activities remain

undisrupted at runtime; messages will not be lost and the failover will be invisible to the processes and

users of Neuron ESB. Internally we detect connection issues and then cache and resend the messages

when we fail to receive the original acks/nacks from the Rabbit MQ servers.

Multiple Environments and VHosts

New to CU4 is the inclusion of the vHost property. A common practice by some Rabbit MQ users is to

establish specific vHosts to mirror their deployment environments. For example, there may be a vHost

named “Development”, “QA” and “Production”. By supporting Rabbit MQ vHost environments, Neuron

ESB users can easily map Neuron ESB deployment groups to their respective vHost environments. This

will functionally isolate the underlying queues and exchanges that Neuron ESB creates for one

deployment group from another on the same Rabbit MQ server instance.

Once the Rabbit MQ servers are registered with a Deployment Group, Topics and Parties can be

configured to use the Rabbit MQ Transport.

https://www.rabbitmq.com/management.html
https://www.rabbitmq.com/ha.html

Neuron ESB Topic Configuration

The Rabbit MQ Transport configuration is located on the Networking tab of the Topic by navigating to

Messaging->Publish and Subscribe->Topics within the Neuron Explorer.

In the CU4 release a number of new properties have been added, some changed (*), others removed

Property Category CU4 Description
Delivery Mode Publish * Persistent (i.e. Durable) or NonPersistent. Persistence ensures message is

written to disk. If using Transactions, Persistence SHOULD be used.

Transaction Type Publish * Controls the level of reliability for messages. Either 'None',
'PublisherConfirms' or 'Transactional' can be selected. 'PublisherConfirms'
uses an asynchronous Ack/Nack protocol while 'Transactional' forces a
commit/rollback on each message published.

 -Batch Size Publish Only for use with PublishConfirms type of transactions. The number of
messages that will be published to Rabbit MQ in a Publish Confirm
transaction

 -Batch Confirm Timeout Publish NEW Only for use with PublishConfirms type of transactions. The number of
seconds to wait after the Batch of messages have been published to receive
all ACKs/NACKs from Rabbit MQ. Should be a value between 1 and 60.

 -Inactivity Timeout Publish NEW Only for use with PublishConfirms type of transactions. The number of
minutes to wait after the last message sent before checking to determine if

all ACKs/NACKs from Rabbit MQ have been received. Should be a value
between 1 and 5.

 -Resubmit UnAck’d Messages Publish Only for use with PublishConfirms type of transactions. If true and 'Detect
Duplicates' are selected, messages that were published but were not
acknowledged will be republished. This should only occur when dealing
with clustered/mirrored Rabbit MQ instances. The republish would occur
when a connection is reestablished with another server in the cluster.

Time To Live Publish A value in minutes that specifies how long messages are valid for delivery
before they are expired (dead letter) and transferred as a failed message
into the Neuron ESB database.

Must be Routable Publish NEW If set to true, the message must be routable by Rabbit MQ. If the message
cannot be routed to a destination queue, it will be stored as a failed
message into the Neuron ESB database. **This will incur a significant
performance penalty. This should NEVER be needed as Neuron ESB will
dynamically create any missing queue or exchange on startup.

Prefetch Size Receive NEW The number of messages that will be prefetched from the queue to
transport layer. A value of 0 means unlimited.

 -Detect Duplicates Receive Only for use with PublishConfirms type of transactions. If true, duplicate
messages received by the Neuron ESB Party will be discarded. This can be
used to provide once only delivery.

 -Detection Window Receive Only for use with PublishConfirms type of transactions. The amount of time
(in minutes) in which previously received message meta data will be
maintained in memory to search against for duplicate messages.

 -Report Duplicates Receive Only for use with PublishConfirms type of transactions. If true, if a duplicate
message is discovered it will be logged as a Warning in the Neuron ESB
Windows Event log.

SSL Enabled Security NEW Connect to Rabbit MQ Server using only SSL

 -Port Security NEW SSL Port for all Rabbit MQ server connections

 -SSL Protocol Security NEW SSL Protocol to use for all Rabbit MQ server connections.

 -Client Authentication Security NEW Require Neuron ESB to provide Rabbit MQ Server a client certificate to
authenticate against.

 -Certificate Security NEW Select a client certificate configured in the Security section of the Neuron
ESB Explorer to authenticate against the Rabbit MQ Server.

 -Passphrase Security NEW Passphrase for the client certificate, if one exists

The values of these properties control how the Rabbit MQ transport functions for each Publisher or

Subscriber that has a subscription to the configured Topic. In the CU4 release the following properties

were removed because they were no longer relevant:

 Failed Message Path

 Auto Acknowledge

For greater clarification of their respective capabilities, the Recoverable property was renamed to

Delivery Mode and Reliability Mode was renamed to Transaction Type. Also, in previous versions a user

could only select to use Transactions if the persistent messaging was also selected. In CU4, that is no

longer a requirement.

In most cases though then internal implementation of most of these properties have changed to

provide, better performance, scalability reliability and fault tolerance.

Management

In previous versions, the Neuron ESB Rabbit MQ Transport channel would dynamically create the

necessary underlying Rabbit MQ based infrastructure (e.g. Queues, Exchanges, Bindings, etc.) anytime a

Neuron ESB Party connected to the bus or, when the Neuron ESB Topic started up. This eliminated the

need for administrators to manually create and maintain the Rabbit MQ infrastructure Neuron ESB

required. Consequently, this made the underlying Rabbit MQ Transport virtually invisible to anyone

using the Neuron ESB Party API, and alleviated the need for administrators to manage additional

infrastructure requirements.

However, what Neuron ESB did not do was keep the infrastructure in sync with changes made within the

Neuron ESB Explorer. For example, if Topics/Parties were either renamed or deleted, their respective

Rabbit MQ Queues and Exchanges would remain, unchanged and orphaned. If renamed, Neuron ESB

would simply create a new set of Queues and Exchanges to use. If there were messages in the old

Queues, they would remain but would have to be dealt manually by administrators.

Neuron ESB also created an unnecessary extra sets of Queues and Exchanges if the Recoverability

property was set to True. All of this has been changed in the CU4 release.

Naming Conventions

The first notable change that we made in the CU4 was renaming of the underlying Rabbit MQ Queues

and Exchanges. In previous versions of Neuron ESB, Queues and Exchanges used the following naming

conventions:

Rabbit MQ Exchanges:

<InstanceName>.<Zone>.<Topic>.d.ad

Rabbit MQ Queues:

<InstanceName>.<Zone>.<Topic>.<Party>.d.ad

Where:

 InstanceName = Name of the Neuron ESB runtime Instance running the solution

 Zone = The name of the Neuron ESB Zone within the solution

 Topic = The name of the Neuron ESB Topic within the solution

 Party = The name of the Neuron ESB Party within the solution

 d = The “d” is appended if the Neuron ESB Topic was configured to be persistent

 ad = The “ad” is appended if the Neuron ESB Topic was configured to be deleted when

Parties are no longer connected to the Topic

In the CU4 Release the naming conventions have been simplified to the following, eliminating the

unnecessary extra sets of Queues and Exchanges to be managed:

Rabbit MQ Exchanges:

NEURON.<InstanceName>.<Topic>

Rabbit MQ Queues:

NEURON.<InstanceName>.<Topic>.<Party>

Synchronization

New in the CU4 release is the full management of the Rabbit MQ infrastructure Queues and Exchanges

used by Neuron ESB. Previously, Neuron ESB would only create their respective dependent Rabbit MQ

Queues and Exchanges on startup as well as when any Party connected to the bus. Neuron ESB now

additionally handles renaming and deleting these if their respective counter parts within the Neuron ESB

Explorer (e.g. Topics, Publishers and Subscribers) are renamed or deleted. For deletions, Neuron ESB will

delete its respective underlying Rabbit MQ Queues only if there are no messages that remaining in the

Queue.

Performance and Reliability

A number of internal changes have been made to the Rabbit MQ Transport to enhance reliability, error

reporting, and functionality while at the same time significantly increase the performance of certain

operations and message throughput.

Serialization Format

One of the first changes made was to the serialization method that Neuron ESB uses to interact with the

underlying Rabbit MQ infrastructure. Previously, Neuron ESB serialized the entire Neuron ESB Message

using Binary Serialization. With the introduction of CU4, this has been changed to a custom serialization

method where only the body of the Neuron ESB Message is published, while the necessary internal

Neuron ESB Message headers are custom serialized as Rabbit MQ custom header properties. This has

several advantages; reduces CPU utilization, allows for the message body to be accessed without

proprietary methods and reduces the overall payload size that the underlying Rabbit MQ infrastructure

has to work with.

Publish Confirm Transactions

The Neuron ESB Rabbit MQ Transport supports both Transaction types that Rabbit MQ offers; their

channel based Transaction model as well as their batched style Transaction model e.g. Publish Confirms.

Both are Acknowledge, Negative Acknowledgement (ack/nack) based models. Users can learn more

about Publish Confirms here: https://www.rabbitmq.com/confirms.html , as well as why Rabbit MQ

introduced them: http://www.rabbitmq.com/blog/2011/02/10/introducing-publisher-confirms .

In CU4 a number of enhancements were made to the Publish Confirm model to make it more reliable as

well as more performant. Neuron ESB now handles the ack/nack reconciliation process more efficiently,

especially where multiple acks/nacks are received on a single event, alleviating unnecessary locking on

the collection of messages we have to maintain internally. The CU4 release also exposes additional

properties that can be used to finely tune the performance and throughput as well the reliability of the

batch transaction such as “Batch Confirm Timeout” and “Inactivity Timeout”. These properties force

Neuron ESB to call into Rabbit MQ for it to finish sending any pending acks/nacks, and only then do we

resubmit the messages that we’ve neither received acks or nacks for. Messages we receive nacks for or

where we’re notified by Rabbit MQ that that message is undeliverable, are automatically moved into the

Neuron ESB Failed database table.

Receiving messages

In previous versions the underlying Neuron ESB Rabbit MQ Transport would receive messages for its

respective Neuron ESB Parties (or Dead Letter processing) by creating an underlying consumer and

continually polling the queue. In CU4 this has been changed to use Rabbit MQ’s new event based

consumer.

https://www.rabbitmq.com/confirms.html
http://www.rabbitmq.com/blog/2011/02/10/introducing-publisher-confirms

Dead Letter Processing

The CU4 Rabbit MQ Topic transport implementation includes a custom Dead Letter processor, Exchange

and Queue to handle those messages delivered to Subscribers that exceed the configured Time to Live

property. These messages are automatically detected and moved into the Neuron ESB Failed Message

database table.

These messages will be available to be queried, viewed, modified and resubmitted by using the “Failed

Message Viewer” window launched from the Failed Messages report located by navigating to Activity-

>Database Reports->Failed Messages within the Neuron ESB Explorer.

The messages recorded will have an Exception Type of “Dead Letter”. The failure message will contain

failure details such as the name of the underlying Queue and the associated Exchange that the message

expired in as well as the date time stamp indicating when the message expired.

CU4 Performance Comparison

The latest Neuron ESB public release was tested against the CU4 release using a relatively

underpowered non server grade machine configured with 16GB RAM, Windows 7 64 bit, Dual CPU (quad

core). The results of the testing can be found in the table below:

Configuration

Messages
Sent/Received

Message Size
(Bytes)

CU3
(msg/sec)

CU4
(msg/sec)

No Persistence/No Transactions 500,000 100 4,550 12,000

No Persistence/No Transactions 500,000 1024 4,200 9,400

Persistence/No Transactions 500,000 100 4,400 8,500

Persistence/No Transactions 500,000 1024 4,075 7,900

Persistence/Publish Confirm Transactions/Batch
Size = 1000

500,000 100 1,750 3,000

Persistence/Publish Confirm Transactions/Batch
Size = 1000

500,000 1024 1,300 3,000

Basic Improvements

A variety of improvements for the Neuron ESB Rabbit MQ Transport have been included in the CU4

release. For example, Request/Response type message communication when using Neuron ESB Sub

Topics was not supported in previous releases. Neuron ESB now monitors more events from Rabbit MQ

to better respond to error conditions for everything from resource constrictions to unanticipated

shutdown events. Failed message auditing has been refactored to decrease the opportunity for faults to

occur when attempting to store failed or dead letter messages to the Neuron ESB failed database table

Security

With CU4’s support for Rabbit MQ 3.5.6 comes support for SSL. SSL can be enabled in the Transport

Properties located on the Networking tab of the Topic by navigating to Messaging->Publish and

Subscribe->Topics within the Neuron Explorer.

Once SSL has been enabled, the Rabbit MQ SSL port needs to be provided and the SSL Protocol to use

must be selected. Although Neuron ESB and Rabbit MQ supports both SSL2, SSL3, TLS, TLS 1.1 and TLS

1.2 by default SSL3 support is disabled by Rabbit MQ to avoid POODLE attacks. More about Rabbit MQ

and its SSL support can be found here: http://www.rabbitmq.com/ssl.html

Client Authentication can also be enabled by providing a Certificate (registered within the Security

section of the Neuron ESB Explorer).

Configuring SSL support is done by modifying the Rabbit MQ configuration file as well as registering

several important Environment Variables for the machine. More information can be found here:

http://www.rabbitmq.com/configure.html .

http://www.rabbitmq.com/ssl.html
http://www.rabbitmq.com/configure.html

